Abstract
A combination of analytical calculations and laboratory experiments has been used to investigate the geostrophic adjustment of two buoyant fluids having different densities in a third denser ambient fluid. The frontal position, the depth profile, and the horizontal and vertical alignments of the two buoyant fluids at the final equilibrium state are determined by the ratio of the baroclinic Rossby radii of deformation Γ1 = λ31/λ21 and Γ2 = λ32/λ21 and the Burger numbers B1 = λ31/L1 and B2 = λ32/L2 of the two buoyant fluids, where