Does Net EP Set a Preference for North Atlantic Sinking?

Selma E. Huisman Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands

Search for other papers by Selma E. Huisman in
Current site
Google Scholar
PubMed
Close
,
Henk A. Dijkstra Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands

Search for other papers by Henk A. Dijkstra in
Current site
Google Scholar
PubMed
Close
,
A. S. von der Heydt Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands

Search for other papers by A. S. von der Heydt in
Current site
Google Scholar
PubMed
Close
, and
W. P. M. de Ruijter Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands

Search for other papers by W. P. M. de Ruijter in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The present-day global meridional overturning circulation (MOC) with formation of North Atlantic Deep Water (NADW) and the absence of a deep-water formation in the North Pacific is often considered to be caused by the fact that the North Pacific basin is a net precipitative, while the North Atlantic is a net evaporative basin. In this paper, the authors study the effect of asymmetries in continent geometry and freshwater fluxes on the MOC both in an idealized two-dimensional model and in a global ocean model. This study approaches the problem from a multiple equilibria perspective, where asymmetries in external factors constrain the existence of steady MOC patterns. Both this multiple equilibria perspective and the fact that a realistic global geometry is used add new aspects to the problem. In the global model, it is shown that the Atlantic forced by net precipitation can have a meridional overturning circulation with northern sinking and a sea surface salinity that resembles the present-day salinity field. The model results are suggestive of the importance of factors other than the freshwater flux asymmetries, in particular continental asymmetries, in producing the meridional overturning asymmetry.

Corresponding author address: Henk A. Dijkstra, Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 Utrecht, Netherlands. E-mail: h.a.dijkstra@uu.nl

Abstract

The present-day global meridional overturning circulation (MOC) with formation of North Atlantic Deep Water (NADW) and the absence of a deep-water formation in the North Pacific is often considered to be caused by the fact that the North Pacific basin is a net precipitative, while the North Atlantic is a net evaporative basin. In this paper, the authors study the effect of asymmetries in continent geometry and freshwater fluxes on the MOC both in an idealized two-dimensional model and in a global ocean model. This study approaches the problem from a multiple equilibria perspective, where asymmetries in external factors constrain the existence of steady MOC patterns. Both this multiple equilibria perspective and the fact that a realistic global geometry is used add new aspects to the problem. In the global model, it is shown that the Atlantic forced by net precipitation can have a meridional overturning circulation with northern sinking and a sea surface salinity that resembles the present-day salinity field. The model results are suggestive of the importance of factors other than the freshwater flux asymmetries, in particular continental asymmetries, in producing the meridional overturning asymmetry.

Corresponding author address: Henk A. Dijkstra, Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 Utrecht, Netherlands. E-mail: h.a.dijkstra@uu.nl
Save
  • Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Graßl, and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3. Earth Syst. Sci. Data, 2, 215234.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., 2009: Atmospheric control on the thermohaline circulation. J. Phys. Oceanogr., 39, 234247.

  • de Boer, A. M., J. R. Toggweiler, and D. M. Sigman, 2008: Atlantic dominance of the meridional overturning circulation. J. Phys. Oceanogr., 38, 435450.

    • Search Google Scholar
    • Export Citation
  • Den Toom, M., H. Dijkstra, A. Cimatoribus, and S. Drijfhout, 2012: Effect of atmospheric feedbacks on the stability of the Atlantic meridional overturning circulation. J. Climate, 25, 40814096.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2005: Nonlinear Physical Oceanography. 2nd ed. Springer, 532 pp.

  • Dijkstra, H. A., and M. J. Molemaker, 1997: Symmetry breaking and overturning oscillations in thermohaline-driven flows. J. Fluid Mech., 331, 169198.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and W. Weijer, 2005: Stability of the global ocean circulation: Basic bifurcation diagrams. J. Phys. Oceanogr., 35, 933948.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., S. Weber, and E. van der Swaluw, 2010: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dyn., 40, 112.

    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., M. A. Cane, N. Naik, R. Seager, A. C. Clement, and A. van Geen, 2003: Warren revisited: Atmospheric freshwater fluxes and “Why is no deep water formed in the North Pacific.” J. Geophys. Res., 108, 31783188.

    • Search Google Scholar
    • Export Citation
  • Ferrari, F., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186.

  • Ferreira, D., and J. Marshall, 2010: Localization of deep-water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561466.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, L. C. Allison, J. M. Gregory, T. J. Woollings, H. Pohlmann, and B. De Cuevas, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, doi:10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. M. C., and A. J. Weaver, 1994: Multiple equilibria of an asymmetric two-basin ocean model. J. Phys. Oceanogr., 24, 619637.

    • Search Google Scholar
    • Export Citation
  • Huisman, S. E., H. A. Dijkstra, A. von der Heydt, and W. P. M. De Ruijter, 2009: Robustness of multiple equilibria in the global ocean circulation. Geophys. Res. Lett., 36, L01610, doi:10.1029/2008GL036322.

    • Search Google Scholar
    • Export Citation
  • Huisman, S. E., M. den Toom, H. A. Dijkstra, and S. Drijfhout, 2010: An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 40, 551567.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Marotzke, J., and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21, 13721385.

  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530560.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. G. Olson, and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. NCAR Tech. Note NCAR/TN-338+str, 93 pp.

  • von der Heydt, A., and H. A. Dijkstra, 2008: The effect of gateways on ocean circulation patterns in the Cenozoic. Global Planet. Change, 62 (1–2), 132146.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1983: Why is no deep water formed in the North Pacific. J. Mar. Res., 41, 327347.

  • Weaver, A. J., C. M. Bitz, A. F. Fanning, and M. M. Holland, 1999: Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic. Annu. Rev. Earth Planet. Sci., 27, 231285.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and H. A. Dijkstra, 2001: A bifurcation study of the three-dimensional thermohaline ocean circulation: The double hemispheric case. J. Mar. Res., 33, 599631.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., H. A. Dijkstra, H. Oksuzoglu, F. W. Wubs, and A. C. de Niet, 2003: A fully-implicit model of the global ocean circulation. J. Comput. Phys., 192, 452470.

    • Search Google Scholar
    • Export Citation
  • Zaucker, F., T. F. Stocker, and W. S. Broecker, 1994: Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. J. Geophys. Res., 99, 12 44312 457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 416 276 92
PDF Downloads 110 24 1