The Unpredictable Nature of Internal Tides on Continental Shelves

Jonathan D. Nash College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Jonathan D. Nash in
Current site
Google Scholar
PubMed
Close
,
Samuel M. Kelly University of Western Australia, Perth, Western Australia, Australia

Search for other papers by Samuel M. Kelly in
Current site
Google Scholar
PubMed
Close
,
Emily L. Shroyer College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Emily L. Shroyer in
Current site
Google Scholar
PubMed
Close
,
James N. Moum College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by James N. Moum in
Current site
Google Scholar
PubMed
Close
, and
Timothy F. Duda Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Timothy F. Duda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Packets of nonlinear internal waves (NLIWs) in a small area of the Mid-Atlantic Bight were 10 times more energetic during a local neap tide than during the preceding spring tide. This counterintuitive result cannot be explained if the waves are generated near the shelf break by the local barotropic tide since changes in shelfbreak stratification explain only a small fraction of the variability in barotropic to baroclinic conversion. Instead, this study suggests that the occurrence of strong NLIWs was caused by the shoaling of distantly generated internal tides with amplitudes that are uncorrelated with the local spring-neap cycle. An extensive set of moored observations show that NLIWs are correlated with the internal tide but uncorrelated with barotropic tide. Using harmonic analysis of a 40-day record, this study associates steady-phase motions at the shelf break with waves generated by the local barotropic tide and variable-phase motions with the shoaling of distantly generated internal tides. The dual sources of internal tide energy (local or remote) mean that shelf internal tides and NLIWs will be predictable with a local model only if the locally generated internal tides are significantly stronger than shoaling internal tides. Since the depth-integrated internal tide energy in the open ocean can greatly exceed that on the shelf, it is likely that shoaling internal tides control the energetics on shelves that are directly exposed to the open ocean.

Corresponding author address: Jonathan D. Nash, 104 CEOAS Admin. Bldg., Oregon State University, Corvallis, OR 97331. E-mail: nash@coas.oregonstate.edu

Abstract

Packets of nonlinear internal waves (NLIWs) in a small area of the Mid-Atlantic Bight were 10 times more energetic during a local neap tide than during the preceding spring tide. This counterintuitive result cannot be explained if the waves are generated near the shelf break by the local barotropic tide since changes in shelfbreak stratification explain only a small fraction of the variability in barotropic to baroclinic conversion. Instead, this study suggests that the occurrence of strong NLIWs was caused by the shoaling of distantly generated internal tides with amplitudes that are uncorrelated with the local spring-neap cycle. An extensive set of moored observations show that NLIWs are correlated with the internal tide but uncorrelated with barotropic tide. Using harmonic analysis of a 40-day record, this study associates steady-phase motions at the shelf break with waves generated by the local barotropic tide and variable-phase motions with the shoaling of distantly generated internal tides. The dual sources of internal tide energy (local or remote) mean that shelf internal tides and NLIWs will be predictable with a local model only if the locally generated internal tides are significantly stronger than shoaling internal tides. Since the depth-integrated internal tide energy in the open ocean can greatly exceed that on the shelf, it is likely that shoaling internal tides control the energetics on shelves that are directly exposed to the open ocean.

Corresponding author address: Jonathan D. Nash, 104 CEOAS Admin. Bldg., Oregon State University, Corvallis, OR 97331. E-mail: nash@coas.oregonstate.edu
Save
  • Alford, M. H., 2003: Energy available for ocean mixing redistributed by long-range propagation of internal waves. Nature, 423, 159–162.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. M. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, doi:10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Apel, J. R., and Coauthors, 1997: An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng., 22, 465–500.

    • Search Google Scholar
    • Export Citation
  • Arbic, B., A. Wallcraft, and E. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175–187.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29, 307–338.

  • Bogucki, D., T. Dickey, and L. G. Redekopp, 1997: Sediment resuspension and mixing by resonantly generated internal solitary waves. J. Phys. Oceanogr., 27, 1181–1196.

    • Search Google Scholar
    • Export Citation
  • Brickman, D., and J. Loder, 1993: Energetics of the internal tide on northern Georges Bank. J. Phys. Oceanogr., 23, 409–424.

  • Buijsman, M., Y. Uchiyama, J. McWilliams, and C. Hill-Lindsay, 2012: Modeling semidiurnal internal tide variability in the Southern California Bight. J. Phys. Oceanogr., 42, 62–77.

    • Search Google Scholar
    • Export Citation
  • Carter, G., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 2205–2223.

    • Search Google Scholar
    • Export Citation
  • Castelao, R., O. Schofield, S. Glenn, R. Chant, and J. Kohut, 2008: Cross-shelf transport of freshwater on the New Jersey shelf. J. Geophys. Res., 113, C07017, doi:10.1029/2007JC004241.

    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, D. Luther, and K.-W. Gurgel, 2010: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents. J. Phys. Oceanogr., 40, 1180–1200.

    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., and W. Munk, 2006: Tales of the venerable Honolulu tide gauge. J. Phys. Oceanogr., 36, 967–996.

  • Colosi, J. A., R. C. Beardsley, J. F. Lynch, G. Gawarkiewicz, C. Chiu, and A. Scotti, 2001: Observations of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study. J. Geophys. Res., 106 (C5), 9587–9601.

    • Search Google Scholar
    • Export Citation
  • Duda, T., and L. Rainville, 2008: Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. J. Geophys. Res., 113, C03025, doi:10.1029/2007JC004418.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B., P. Worcester, and M. Dzieciuch, 2011: On the predictability of mode-1 internal tides. Deep-Sea Res. I, 58, 677–698.

  • Echeverri, P., and T. Peacock, 2010: Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech., 659, 247–266.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., 1997: Tidal inversion: Interpolation and inference. Prog. Oceanogr., 40 (1–4), 53–80.

  • Gerkema, T., F. Lam, and L. Maas, 2004: Internal tides in the Bay of Biscay: Conversion rates and seasonal effects. Deep-Sea Res. II, 51, 2995–3008.

    • Search Google Scholar
    • Export Citation
  • Guo, C., X. Chen, V. Vlasenko, and N. Stashchuk, 2011: Numerical investigation of internal solitary waves from the Luzon Strait: Generation process, mechanism and three-dimensional effects. Ocean Modell., 38 (3–4), 203–216.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., and A. Hoering, 1997: Energetics of borelike internal waves. J. Geophys. Res., 102 (C2), 3323–3330.

  • Hosegood, P., and H. van Haren, 2006: Sub-inertial modulation of semi-diurnal currents over the continental slope in the Faeroe-Shetland Channel. Deep-Sea Res. I, 53, 627–655.

    • Search Google Scholar
    • Export Citation
  • Inall, M., T. Rippeth, and T. Sherwin, 2000: Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. J. Geophys. Res., 105, 8687–8705.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, K. Martini, M. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 1217–1232.

    • Search Google Scholar
    • Export Citation
  • Klymak, J., S. Legg, and R. Pinkel, 2010a: High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech., 644, 321–336.

    • Search Google Scholar
    • Export Citation
  • Klymak, J., S. Legg, and R. Pinkel, 2010b: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 2059–2074.

    • Search Google Scholar
    • Export Citation
  • Klymak, J., M. Alford, R. Pinkel, R. Lien, Y. Yang, and T. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926–945.

    • Search Google Scholar
    • Export Citation
  • Kunze, E. L., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 1890–1913.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A., G. Egbert, J. Allen, R. Miller, S. Erofeeva, and P. Kosro, 2003: The M2 internal tide off Oregon: Inferences from data assimilation. J. Phys. Oceanogr., 33, 1733–1757.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 1994: Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J. Geophys. Res., 99 (C1), 843–864.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2007: Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont. Shelf Res., 27, 1208–1232.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., and V. T. Nguyen, 2009: Calculating energy flux in internal solitary waves with an application to reflectance. J. Phys. Oceanogr., 39, 559–580.

    • Search Google Scholar
    • Export Citation
  • Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield, and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1165–1183.

    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., C. D. Winant, and M. C. Hendershott, 2003: Observations of the semidiurnal internal tide on the southern California slope and shelf. J. Geophys. Res., 108, 3068, doi:10.1029/2001JC001128.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and D. Farmer, 2011: The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J. Phys. Oceanogr., 41, 1345–1363.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M., 1984: Statistical properties of wave groups in a random sea state. Philos. Trans. Roy. Soc. London, A312, 219–250

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003: Shear and baroclinic energy flux on the summer New England shelf. J. Phys. Oceanogr., 33, 1462–1475.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 5753–5766.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and W. Smyth, 2006: The pressure disturbance of a nonlinear internal wave train. J. Fluid Mech., 558, 153–177.

  • Moum, J. N., and J. D. Nash, 2008: Seafloor pressure measurements of nonlinear internal waves. J. Phys. Oceanogr., 38, 481–491.

  • Moum, J. N., D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle, 2003: Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 2093–2112.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., J. M. Klymak, J. D. Nash, A. Perlin, and W. D. Smyth, 2007: Energy transport by nonlinear internal waves. J. Phys. Oceanogr., 37, 1968–1988.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 1117–1134.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 1551–1570.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, C. M. Lee, and T. B. Sanford, 2006: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 1123–1135.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. L. Shroyer, S. M. Kelly, M. E. Inall, T. F. Duda, M. D. Levine, N. L. Jones, and R. C. Musgrave, 2012: Are any coastal internal tides predictable? Oceanography (Wash. D.C.), 25, 80–95.

    • Search Google Scholar
    • Export Citation
  • Newhall, A., and Coauthors, 2007: Acoustic and oceanographic observations and configuration information for the WHOI moorings from the SW06 experiment. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2007-04, 116 pp.

  • Osborne, J. J., A. L. Kurapov, G. D. Egbert, and P. M. Kosro, 2011: Spatial and temporal variability of the M2 internal tide generation and propagation on the Oregon shelf. J. Phys. Oceanogr., 41, 2037–2062.

    • Search Google Scholar
    • Export Citation
  • Pineda, J., 1991: Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science, 253, 548–551.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., and A. L. New, 1991: Abyssal penetration and bottom reflection of internal tide energy into the Bay of Biscay. J. Phys. Oceanogr., 21, 28–39.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propogation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 1220–1236.

  • Rainville, L., T. Johnston, G. Carter, M. Merrifield, R. Pinkel, P. Worcester, and B. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311–325.

    • Search Google Scholar
    • Export Citation
  • Ramp, S., Y. Yang, and F. Bahr, 2010: Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes Geophys., 17, 481–498.

    • Search Google Scholar
    • Export Citation
  • Rattray, M., 1960: On the coastal generation of internal tides. Tellus, 12, 54–62, doi:10.1111/j.2153-3490.1960.tb01283.x.

  • Ray, R., and D. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 1259–1262.

    • Search Google Scholar
    • Export Citation
  • Savidge, D., C. Edwards, and M. Santana, 2007: Baroclinic effects and tides on the Cape Hatteras continental shelf. J. Geophys. Res., 112, C09016, doi:10.1029/2006JC003832.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. Beardsley, and B. Butman, 2006: On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay. J. Fluid Mech., 561, 103–112.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. Beardsley, B. Butman, and J. Pineda, 2008: Shoaling of nonlinear internal waves in Massachusetts Bay. J. Geophys. Res., 113, C08031, doi:10.1029/2008JC004726.

    • Search Google Scholar
    • Export Citation
  • Shanks, A., 1983: Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. Oldendorf, 13, 311–315.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T., 1993: A unified theory of available potential energy. Atmos.–Ocean, 31, 1–1.

  • Sherwin, T., V. Vlasenko, N. Stashchuk, D. Jeans, and B. Jones, 2002: Along-slope generation as an explanation for some unusually large internal tides. Deep-Sea Res. I, 49, 1787–1799.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E., J. Moum, and J. Nash, 2010a: Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Processes Geophys., 17, 345–360.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E., J. Moum, and J. Nash, 2010b: Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophys. Res. Lett., 37, L08601, doi:10.1029/2010GL042715.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E., J. Moum, and J. Nash, 2011: Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, C03022, doi:10.1029/2010JC006332.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., R. Hallberg, and B. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res., 51, 3043–3068.

    • Search Google Scholar
    • Export Citation
  • Small, J., Z. Hallock, G. Pavey, and J. Scott, 1999: Observations of large amplitude internal waves at the Malin Shelf edge during SESAME 1995. Cont. Shelf Res., 19, 1389–1436.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res., 50, 987–1003.

    • Search Google Scholar
    • Export Citation
  • Tang, D., and Coauthors, 2007: Shallow Water’06: A joint acoustic propagation/nonlinear internal wave physics experiment. Oceanography (Wash. D.C.), 20, 156–167.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2004: Incoherent internal tidal currents in the deep ocean. Ocean Dyn., 54, 66–76.

  • Zilberman, N. V., M. A. Merrifield, G. S. Carter, D. S. Luther, M. D. Levine, and T. J. Boyd, 2011: Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 2021–2036.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 679 205 8
PDF Downloads 624 194 11