Eddy-Induced Particle Dispersion in the Near-Surface North Atlantic

Irina I. Rypina Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Irina I. Rypina in
Current site
Google Scholar
PubMed
Close
,
Igor Kamenkovich Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Igor Kamenkovich in
Current site
Google Scholar
PubMed
Close
,
Pavel Berloff Grantham Institute for Climate Change and Department of Mathematics, Imperial College London, South Kensington Campus, London, United Kingdom

Search for other papers by Pavel Berloff in
Current site
Google Scholar
PubMed
Close
, and
Lawrence J. Pratt Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Lawrence J. Pratt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the anisotropic properties of the eddy-induced material transport in the near-surface North Atlantic from two independent datasets, one simulated from the sea surface height altimetry and one derived from real-ocean surface drifters, and systematically examines the interactions between the mean- and eddy-induced material transport in the region. The Lagrangian particle dispersion, which is widely used to characterize the eddy-induced tracer fluxes, is quantified by constructing the “spreading ellipses.” The analysis consistently demonstrates that this dispersion is spatially inhomogeneous and strongly anisotropic. The spreading is larger and more anisotropic in the subtropical than in the subpolar gyre, and the largest ellipses occur in the Gulf Stream vicinity. Even at times longer than half a year, the spreading exhibits significant nondiffusive behavior in some parts of the domain. The eddies in this study are defined as deviations from the long-term time-mean. The contributions from the climatological annual cycle, interannual, and subannual (shorter than one year) variability are investigated, and the latter is shown to have the strongest effect on the anisotropy of particle spreading. The influence of the mean advection on the eddy-induced particle spreading is investigated using the “eddy-following-full-trajectories” technique and is found to be significant. The role of the Ekman advection is, however, secondary. The pronounced anisotropy of particle dispersion is expected to have important implications for distributing oceanic tracers, and for parameterizing eddy-induced tracer transfer in non-eddy-resolving models.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. E-mail: irypina@whoi.edu

Abstract

This study investigates the anisotropic properties of the eddy-induced material transport in the near-surface North Atlantic from two independent datasets, one simulated from the sea surface height altimetry and one derived from real-ocean surface drifters, and systematically examines the interactions between the mean- and eddy-induced material transport in the region. The Lagrangian particle dispersion, which is widely used to characterize the eddy-induced tracer fluxes, is quantified by constructing the “spreading ellipses.” The analysis consistently demonstrates that this dispersion is spatially inhomogeneous and strongly anisotropic. The spreading is larger and more anisotropic in the subtropical than in the subpolar gyre, and the largest ellipses occur in the Gulf Stream vicinity. Even at times longer than half a year, the spreading exhibits significant nondiffusive behavior in some parts of the domain. The eddies in this study are defined as deviations from the long-term time-mean. The contributions from the climatological annual cycle, interannual, and subannual (shorter than one year) variability are investigated, and the latter is shown to have the strongest effect on the anisotropy of particle spreading. The influence of the mean advection on the eddy-induced particle spreading is investigated using the “eddy-following-full-trajectories” technique and is found to be significant. The role of the Ekman advection is, however, secondary. The pronounced anisotropy of particle dispersion is expected to have important implications for distributing oceanic tracers, and for parameterizing eddy-induced tracer transfer in non-eddy-resolving models.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. E-mail: irypina@whoi.edu
Save
  • Andersson, M., K. A. Orvik, J. H. LaCasce, I. Koszalka, and C. Mauritzen, 2011: Variability of the Norwegian Atlantic current and associated eddy field from surface drifters. J. Geophys. Res.,116, C08032, doi:10.1029/2011JC007078.

  • Armi, L., and D. B. Haidvogel, 1982: Effects of variable and anisotropic diffusivities in a steady-state diffusion model. J. Phys. Oceanogr., 12, 785794.

    • Search Google Scholar
    • Export Citation
  • Bauer, S., M. S. Swenson, and A. Griffa, 2002: Eddy mean flow decomposition and eddy diffusivity estimates in the tropical Pacific Ocean: 2. Results. J. Geophys. Res.,107, 3154, doi:10.1029/2000JC000613.

  • Berloff, P., J. C. McWilliams, and A. Bracco, 2002: Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32, 764796.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 27112734.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567.

    • Search Google Scholar
    • Export Citation
  • Booth, J., and I. Kamenkovich, 2008: Isolating the role of transient mesoscale eddies in mixing of a passive tracer in an eddy resolving model. J. Geophys. Res.,113, C05021, doi:10.1029/2007JC004510.

  • Chelton, D., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general circulation with floats. Deep-Sea Res., 38, 531571.

  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the southern ocean. J. Phys. Oceanogr., 40, 15011519.

    • Search Google Scholar
    • Export Citation
  • Garraffo, Z., A. J. Mariano, A. Griffa, C. Veneziani, and E. Chassignet, 2001: Lagrangian data in a high resolution numerical simulation of the North Atlantic. I: Comparison with in-situ drifter data. J. Mar. Syst., 29, 157176.

    • Search Google Scholar
    • Export Citation
  • Gille, S., and R. Davis, 1999: The influence of mesoscale eddies on coarsely resolved density: An examination of subgrid-scale parameterization. J. Phys. Oceanogr., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Griesel, A., S. T. Gille, J. Sprintall, J. L. McClean, J. H. LaCasce, and M. E. Maltrud, 2010: Isopycnal diffusivities in the Antarctic circumpolar current inferred from Lagrangian floats in an eddying model. J. Geophys. Res.,115, C06006, doi:10.1029/2009JC005821.

  • Huang, H.-P., A. Kaplan, E. Curchitser, and N. Maximenko, 2007: The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res.,112, C09005, doi:10.1029/2007JC004105.

  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009a: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 31623175.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009b: Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr., 39, 13611379.

    • Search Google Scholar
    • Export Citation
  • Keating, S. R., K. S. Smith, and P. R. Kramer, 2011: Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence. J. Phys. Oceanogr., 41, 15121534.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, J. H. LaCasce, and S. T. Merrifield, 2012a: Reconciling Lagrangian and eulerian estimates of eddy diffusivities: Tracer and particle-based estimates. J. Mar. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012b: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576.

    • Search Google Scholar
    • Export Citation
  • Krauss, W., and C. Boning, 1987: Lagrangian properties of eddy fields in the northern North Atlantic as deduced from satellite-tracked buoys. J. Mar. Res., 45, 259291.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2000: Floats and f/h. J. Mar. Res., 58, 6185.

  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129.

  • LaCasce, J. H., and K. G. Speer, 1999: Lagrangian statistics in unforced barotropic flows. J. Mar. Res., 57, 245274.

  • LaCasce, J. H., and A. Bower, 2000: Relative dispersion in the subsurface North Atlantic. J. Mar. Res., 58, 863894.

  • Lumpkin, R., A.-M. Treguier, and K. Speer, 2002: Lagrangian eddy scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32, 24252440.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Stability and implications of surface eddy diffusivity in the southern ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett.,32, L12607, doi:10.1029/2005GL022728.

  • McClean, J. L., P.-M. Poulain, J. W. Pelton, and M. E. Maltrud, 2002: Eulerian and Lagrangian statistics from surface drifters and a high-resolution pop simulation in the North Atlantic. J. Phys. Oceanogr., 32, 24722491.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., R. Coleman, J. Church, and D. Chelton, 1994: Surface eddy momentum flux and velocity variances in the Southern Ocean from Geosat altimetry. J.Phys. Oceanogr., 24, 20502071.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and Y. Chao, 2000: On the eddy isopycnal thickness diffusivity of the Gent–Mcwilliams subgrid mixing parameterization. J. Climate, 13, 502510.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in the area coordinate. J. Atmos. Sci., 53, 15241537.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the southern ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • O’Dwyer, J., R. G. Williams, J. H. LaCasce, and K. G. Speer, 2000: Does the potential vorticity distribution constrain the spreading of floats in the North Atlantic? J. Phys. Oceanogr., 30, 721732.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1971: Oceanic diffusion diagram. Deep-Sea Res., 18, 789802.

  • Owens, W. B., 1984: A synoptic and statistical description of the gulf stream and subtropical gyre using sofar floats. J. Phys. Oceanogr., 14, 104113.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 444 pp.

  • Ralph, E. A., and P. P. Niiler, 1999: Wind-driven currents in the tropical Pacific. J. Phys. Oceanogr., 29, 21212129.

  • Roberts, M., and D. Marshall, 2000: On the validity of downgradient eddy closures in ocean models. J. Geophys. Res., 105, 28 61328 627.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, F. J. Beron-Vera, H. Kocak, M. J. Olascoaga, and I. A. Udovydchenkov, 2007a: On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the Stratospheric Polar Vortex. J. Atmos. Sci., 64, 35933610.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, F. J. Beron-Vera, H. Kocak, M. J. Olascoaga, and I. A. Udovydchenkov, 2007b: Robust transport barriers resulting from strong Kolmogorov-Arnold-Moser stability. Phys. Rev. Lett.,98, 104102, 10.1103/PhysRevLett.98.104102.

  • Rypina, I. I., L. J. Pratt, and M. S. Lozier, 2011: Near-surface transport pathways in the North Atlantic Ocean. J. Phys. Oceanogr., 41, 911925.

    • Search Google Scholar
    • Export Citation
  • Sallee, J.-B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the southern ocean. J. Mar. Res., 66, 441463.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., B. K. Arbic, C. L. Holland, B. Qiu, and A. Sen, 2008: Zonal versus meridional velocity variance in satellite observations and realistic and idealized ocean circulation models. Ocean Modell., 23, 102112.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2005: Tracer transport along and across coherent jets in two-dimensional turbulent flow. J. Fluid Mech., 544, 133142.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Veneziani, M., A. Griffa, A. M. Reynolds, Z. D. Garraffo, and E. P. Chassignet, 2005: Parameterizations of Lagrangian spin statistics and particle dispersion in the presence of coherent vortices. J. Mar. Res., 63, 10571083.

    • Search Google Scholar
    • Export Citation
  • Von Kameke, A., F. Huhn, G. Fernandez-Garcia, A. P. Mumuzuri, and V. Perez-Munuzuri, 2011: Double cascade turbulence and richardson dispersion in a horizontal fluid flow induced by faraday waves. Phys. Rev. Lett.,107, 074502, doi:10.1103/PhysRevLett.107.074502.

  • Young, R., and S. Jones, 1991: Shear dispersion. Phys. Fluids A, 3, 10871101.

  • Zhurbas, V., and I. Oh, 2004: Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res.,109, C05015, doi:10.1029/2003JC002241.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 730 142 21
PDF Downloads 493 82 7