Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind

Fabrice Ardhuin * Ifremer, Laboratoire d’Océanographie Spatiale, Plouzané, France

Search for other papers by Fabrice Ardhuin in
Current site
Google Scholar
PubMed
Close
,
Aron Roland Technological University of Darmstadt, Darmstadt, Germany

Search for other papers by Aron Roland in
Current site
Google Scholar
PubMed
Close
,
Franck Dumas Ifremer, Laboratoire PHYSED, Plouzané, France

Search for other papers by Franck Dumas in
Current site
Google Scholar
PubMed
Close
,
Anne-Claire Bennis Ifremer, Laboratoire PHYSED, Plouzané, France

Search for other papers by Anne-Claire Bennis in
Current site
Google Scholar
PubMed
Close
,
Alexei Sentchev Laboratoire d’Océanologie et Géosciences (CNRS-UMR8187), Université du Littoral-Côte d’Opale, Wimereux, France

Search for other papers by Alexei Sentchev in
Current site
Google Scholar
PubMed
Close
,
Philippe Forget Mediterranean Institute of Oceanography, CNRS, and Aix-Marseille University, and Sud Toulon-Var University, IRD, La Garde, France

Search for other papers by Philippe Forget in
Current site
Google Scholar
PubMed
Close
,
Judith Wolf ** National Oceanographic Center, Liverpool, United Kingdom

Search for other papers by Judith Wolf in
Current site
Google Scholar
PubMed
Close
,
Françoise Girard Actimar SAS, Brest, France

Search for other papers by Françoise Girard in
Current site
Google Scholar
PubMed
Close
,
Pedro Osuna CICESE, Ensenada, Baja California, Mexico

Search for other papers by Pedro Osuna in
Current site
Google Scholar
PubMed
Close
, and
Michel Benoit Laboratoire Saint Venant, Chatou, France

Search for other papers by Michel Benoit in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Currents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and observed strong effects of opposed currents and modulations of wave heights by tidal currents in several typical situations are interpreted. For current variations on small scales, the rapid steepening of the waves enhances wave breaking. Using different parameterizations with a dissipation rate proportional to some measure of the wave steepness to the fourth power, the results are very different, none being fully satisfactory, which points to the need for more measurements and further refinements of parameterizations. For larger-scale current variations, the observed modifications of the sea state are mostly explained by refraction of waves over currents and relative wind effects, that is, the wind speed relevant for wave generation is the speed in the frame of reference moving with the near-surface current. It is shown that introducing currents in wave models can reduce the errors on significant wave heights by more than 30% in some macrotidal environments, such as the coast of Brittany, in France. This large impact of currents is not confined to the locations where the currents are strongest, but also downwave from strong current gradients.

Corresponding author address: Fabrice Ardhuin, Ifremer, Centre de Brest, 29200 Plouzané, France. E-mail: ardhuin@ifremer.fr

Abstract

Currents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and observed strong effects of opposed currents and modulations of wave heights by tidal currents in several typical situations are interpreted. For current variations on small scales, the rapid steepening of the waves enhances wave breaking. Using different parameterizations with a dissipation rate proportional to some measure of the wave steepness to the fourth power, the results are very different, none being fully satisfactory, which points to the need for more measurements and further refinements of parameterizations. For larger-scale current variations, the observed modifications of the sea state are mostly explained by refraction of waves over currents and relative wind effects, that is, the wind speed relevant for wave generation is the speed in the frame of reference moving with the near-surface current. It is shown that introducing currents in wave models can reduce the errors on significant wave heights by more than 30% in some macrotidal environments, such as the coast of Brittany, in France. This large impact of currents is not confined to the locations where the currents are strongest, but also downwave from strong current gradients.

Corresponding author address: Fabrice Ardhuin, Ifremer, Centre de Brest, 29200 Plouzané, France. E-mail: ardhuin@ifremer.fr
Save
  • Alves, J. H. G. M., and M. L. Banner, 2003: Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr.,33, 1274–1298.

  • Alves, J. H. G. M., M. L. Banner, and I. R. Young, 2003: Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr.,33, 1301–1323.

  • Ardhuin, F., and R. Magne, 2007: Current effects on scattering of surface gravity waves by bottom topography. J. Fluid Mech., 576, 235264.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, and W. C. O’Reilly, 2001: A hybrid Eulerian–Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf. J. Phys. Oceanogr., 31, 14981516.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, P. F. Jessen, and W. C. O’Reilly, 2003: Swell transformation across the continental shelf. Part II: Validation of a spectral energy balance equation. J. Phys. Oceanogr.,33, 1940–1953.

  • Ardhuin, F., T. H. C. Herbers, K. P. Watts, G. P. van Vledder, R. Jensen, and H. Graber, 2007: Swell and slanting fetch effects on wind wave growth. J. Phys. Oceanogr., 37, 908931.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., L. Marié, N. Rascle, P. Forget, and A. Roland, 2009: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr.,39, 2820–2838.

  • Ardhuin, F., and Coauthors, 2010: Semi-empirical dissipation source functions for wind-wave models. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., J. Hanafin, Y. Quilfen, B. Chapron, P. Queffeulou, M. Obrebski, J. Sienkiewicz, and D. Vandemark, 2011a: Calibration of the IOWAGA global wave hindcast (1991–2011) using ECMWF and CFSR winds. Proc. 12th Int. Workshop of Wave Hindcasting and Forecasting, Hilo, HI, Environment Canada, 13 pp.

  • Ardhuin, F., E. Stutzmann, M. Schimmel, and A. Mangeney, 2011b: Ocean wave sources of seismic noise. J. Geophys. Res.,116, C09004, doi:10.1029/2011JC006952.

  • Ardhuin, F., J. Tournadre, P. Queffelou, and F. Girard-Ardhuin, 2011c: Observation and parameterization of small icebergs: Drifting breakwaters in the southern ocean. Ocean Modell., 39, 405410, doi:10.1016/j.ocemod.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., K. N. Tsagareli, I. R. Young, and D. J. Walker, 2010: Numerical investigation of spectral evolution of wind waves. Part II: Dissipation term and evolution tests. J. Phys. Oceanogr., 40, 667683.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and R. P. Morison, 2006: On modeling spectral dissipation due to wave breaking for ocean wind waves. Proc. Ninth Int. Workshop on Wave Hindcasting and Forecasting, Victoria, BC, Canada, JCOMM, 12 pp.

  • Banner, M. L., and R. P. Morison, 2010: Refined source terms in wind wave models with explicit wave breaking prediction. Part I: Model framework and validation against field data. Ocean Modell., 33, 177189, doi:10.1016/j.ocemod.2010.01.002.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., A. V. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr.,30, 3145–3160.

  • Barber, N. F., 1949: Behaviour of waves on tidal streams. Proc. Roy. Soc. London, A198, 8193.

  • Battjes, J. A., 1982: A case study of wave height variations due to currents in a tidal entrance. Coastal Eng., 6, 4757.

  • Benoit, M., F. Marcos, and F. Becq, 1996: Development of a third generation shallow-water wave model with unstructured spatial meshing. Proc. 25th Int. Conf. on Coastal Engineering, Orlando, FL, ASCE, 465–478.

  • Bidlot, J.-R., S. Abdalla, and P. Janssen, 2005: A revised formulation for ocean wave dissipation in CY25R1. ECMWF Research Department Tech. Rep. Memo. R60.9/JB/0516, 35 pp.

  • Bidlot, J.-R., and Coauthors, 2007: Inter-comparison of operational wave forecasting systems. Proc. 10th Int. Workshop of Wave Hindcasting and Forecasting, Hilo, HI, Environment Canada, 22 pp. [Available online at http://www.waveworkshop.org/10thWaves/Papers/paper_10th_workshop_Bidlot_at_al.pdf.]

  • Chabert d’Hières, G., and C. Le Provost, 1970: Determination des characteristiques des ondes harmoniques m2 et m4 dans la manche sur modele reduit hydraulique. C. R. Acad. Sci. Paris, A270, 17031706.

    • Search Google Scholar
    • Export Citation
  • Chawla, A., and J. T. Kirby, 2002: Monochromatic and random wave breaking at blocking points. J. Geophys. Res., 107, 3067, doi:10.1029/2001JC001042.

    • Search Google Scholar
    • Export Citation
  • Cochin, V., V. Mariette, P. Broche, and R. Garello, 2006: Tidal current measurements using VHF radar and ADCP in the Normand Breton gulf: Comparison of observations and numerical model. IEEE J. Oceanic Eng., 31, 885893.

    • Search Google Scholar
    • Export Citation
  • Collard, F., F. Ardhuin, and B. Chapron, 2005: Extraction of coastal ocean wave fields from SAR images. IEEE J. Oceanic Eng., 30, 526533.

    • Search Google Scholar
    • Export Citation
  • Dobson, R. S., 1967: Some applications of a digital computer to hydraulic engineering problems. Stanford University Department of Civil Engineering Tech. Rep. 80, 114 pp.

  • Filipot, J.-F., and F. Ardhuin, 2012: A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone. J. Geophys. Res., 117, C00J08, doi:10.1029/2011JC007784.

    • Search Google Scholar
    • Export Citation
  • Forget, P., P. Broche, and F. Cuq, 1995: Principles of swell measurements by SAR with applications to ERS-1 observations off the Mauritanian coast. Int. J. Remote Sens., 16, 24032422.

    • Search Google Scholar
    • Export Citation
  • Girard-Becq, F., B. Seillé, M. Benoit, F. Bazou, and F. Ardhuin, 2005: Evaluation of wave and current models from EPEL-GNB 2003 observations. Proc. Fourth Int. Conf. EuroGOOS, Brest, France, European Commission, 793–796.

  • Gonzalez-Lopez, J. O., J. Westerink, A. Mercado, J. Capella, J. Morell, and M. Canals, 2011: Effect of a steep and complex-featured shelf on computed wave spectra. Proc. 12th Int. Workshop of Wave Hindcasting and Forecasting, Hilo, HI, Environnement Canada, 1–4.

  • Gurgel, K.-W., G. Antonischki, H.-H. Essen, and T. Schlick, 1999: Wellen radar (WERA), a new ground-wave based HF radar for ocean remote sensing. Coastal Eng., 37, 219234.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1974: On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteor., 6, 107127.

  • Haus, B. K., 2007: Surface current effects on the fetch-limited growth of wave energy. J. Geophys. Res.,112, C03003, doi:10.1029/2006JC003924.

  • Hedges, T. S., K. Anastasiou, and D. Gabriel, 1985: Interaction of random waves and currents. J. Waterw. Port Coastal Ocean Eng., 111, 275288.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L., N. Booij, and T. Herbers, 1991: A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coastal Eng., 13, 2354.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., K. Hasselmann, and S. Hasselmann, 1984: On the existence of a fully developed windsea spectrum. J. Phys. Oceanogr.,14, 1271–1285.

  • Kudryavtsev, V. N., S. A. Grodsky, V. A. Dulov, and A. N. Bol’shakov, 1995: Observations of wind waves in the Gulf Stream frontal zone. J. Geophys. Res., 100 (C10), 20 71520 727.

    • Search Google Scholar
    • Export Citation
  • Lai, R. J., S. R. Long, and N. E. Huang, 1989: Laboratory studies of wave-current interaction: Kinematics of the strong interaction. J. Geophys. Res., 94 (C11), 16 20116 214.

    • Search Google Scholar
    • Export Citation
  • Lazure, P., and F. Dumas, 2008: An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour., 31, 233250.

    • Search Google Scholar
    • Export Citation
  • Le Boyer, A., G. Cambon, N. Daniault, S. Herbette, B. L. Cann, L. Marié, and P. Morin, 2009: Observations of the ushant tidal front in September 2007. Cont. Shelf Res., 29, 10261037.

    • Search Google Scholar
    • Export Citation
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global océan tides: Modern insights from fes2004. Ocean Dyn., 56, 394415.

    • Search Google Scholar
    • Export Citation
  • Masson, D., 1996: A case study of wave-current interaction in a strong tidal current. J. Phys. Oceanogr., 26, 359372.

  • Mathiesen, M., 1987: Wave refraction by a current whirl. J. Geophys. Res., 92 (C4), 39053912.

  • McKee, W. D., 1978: The reflection of water waves by a shear current. Pure Appl. Geophys., 115, 937949.

  • O’Reilly, W. C., and R. T. Guza, 1991: Comparison of spectral refraction and refraction-diffraction wave models. J. Waterw. Port Coastal Ocean Eng., 117, 199215.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, W. C., and R. T. Guza, 1993: A comparison of two spectral wave models in the Southern California Bight. Coastal Eng., 19, 263282.

    • Search Google Scholar
    • Export Citation
  • Peregrine, D. H., 1976: Interaction of water waves and currents. Adv. Appl. Mech., 16, 9117.

  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr.,14, 1425–1433.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, P. Queffeulou, and D. Croizé-Fillon, 2008: A global wave parameter database for geophysical applications. Part 1: Wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modell.,25, 154–171, doi:10.1016/j.ocemod.2008.07.006.

  • Ris, R. C., N. Booij, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions. 2. Verification. J. Geophys. Res.,104 (C4), 7667–7681.

  • Roland, A., 2008: Development of WWM II: Spectral wave modelling on unstructured meshes. Ph.D. thesis, Technische Universität Darmstadt, Institute of Hydraulic and Water Resources Engineering, 196 pp.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Schmidt, R. O., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., AP-34, 276280.

  • Sentchev, A., P. Forget, and Y. Barbin, 2009: Residual and tidal circulation revealed by VHF radar surface current measurements in the southern Channel Isles region (English Channel). Estuarine Coastal Shelf Sci., 82, 180192.

    • Search Google Scholar
    • Export Citation
  • Sentchev, A., P. Forget, and M. Yaremchuk, 2012: Surface circulation in the Iroise Sea (W. Brittany) from high resolution HF radar mapping. J. Mar. Syst., doi:10.1016/j.jmarsys.2011.11.024, in press.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1991a: Effects of tides and storm surges on North Sea wind waves. J. Phys. Oceanogr.,21, 766–781.

  • Tolman, H. L., 1991b: A third generation model for wind on slowly varying, unsteady and inhomogeneous depth and currents. J. Phys. Oceanogr.,21, 766–781.

  • Tolman, H. L., 2008: A mosaic approach to wind wave modeling. Ocean Modell., 25, 3547, doi:10.1016/j.ocemod.2008.06.005.

  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH-III version 3.14. NOAA/NWS/NCEP/MMAB Tech. Rep. 276, 220 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn276/276.xml.]

  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr.,26, 2497–2518.

  • Tolman, H. L., and N. Booij, 1998: Modeling wind waves using wavenumber-direction spectra and a variable wavenumber grid. Global Atmos. Ocean Syst., 6, 295309.

    • Search Google Scholar
    • Export Citation
  • van der Westhuysen, A. J., M. Zijlema, and J. A. Battjes, 2005: Implementation of local saturation-based dissipation in SWAN. Proc. Fifth Int. Symp. Ocean Wave Measurement and Analysis, Madrid, Spain, ASCE, 1–10.

  • van Vledder, G. P., and D. P. Hurdle, 2002: Performance of formulations for whitecapping in wave prediction models. Proc. OMAE.02 21st Int. Conf. on Offshore Mechanics and Artic Engineering, Oslo, Norway, OMAE, OMAE2002-28146.

  • Vincent, C. E., 1979: The interaction of wind-generated sea waves with tidal currents. J. Phys. Oceanogr., 9, 748755.

  • WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr.,18, 1775–1810.

  • Waseda, T., T. Kinoshita, and H. Tamura, 2009: Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr., 40, 621639.

    • Search Google Scholar
    • Export Citation
  • WISE Group, 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75, 603674, doi:10.1016/j.pocean.2007.05.005.

  • Wolf, J., and D. Prandle, 1999: Some observations of wave–current interaction. Coastal Eng., 37, 471485.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1851 708 36
PDF Downloads 1231 367 40