Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification

Zhongxiang Zhao Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Zhongxiang Zhao in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Ren-Chieh Lien Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Ren-Chieh Lien in
Current site
Google Scholar
PubMed
Close
,
Michael C. Gregg Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Michael C. Gregg in
Current site
Google Scholar
PubMed
Close
, and
Glenn S. Carter Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Glenn S. Carter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The time variability of the energetics and turbulent dissipation of internal tides in the upper Monterey Submarine Canyon (MSC) is examined with three moored profilers and five ADCP moorings spanning February–April 2009. Highly resolved time series of velocity, energy, and energy flux are all dominated by the semidiurnal internal tide and show pronounced spring-neap cycles. However, the onset of springtime upwelling winds significantly alters the stratification during the record, causing the thermocline depth to shoal from about 100 to 40 m. The time-variable stratification must be accounted for because it significantly affects the energy, energy flux, the vertical modal structures, and the energy distribution among the modes. The internal tide changes from a partly horizontally standing wave to a more freely propagating wave when the thermocline shoals, suggesting more reflection from up canyon early in the observational record. Turbulence, computed from Thorpe scales, is greatest in the bottom 50–150 m and shows a spring-neap cycle. Depth-integrated dissipation is 3 times greater toward the end of the record, reaching 60 mW m−2 during the last spring tide. Dissipation near a submarine ridge is strongly tidally modulated, reaching 10−5 W kg−1 (10–15-m overturns) during spring tide and appears to be due to breaking lee waves. However, the phasing of the breaking is also affected by the changing stratification, occurring when isopycnals are deflected downward early in the record and upward toward the end.

Corresponding author address: Zhongxiang Zhao, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105. E-mail: zzhao@apl.washington.edu

Abstract

The time variability of the energetics and turbulent dissipation of internal tides in the upper Monterey Submarine Canyon (MSC) is examined with three moored profilers and five ADCP moorings spanning February–April 2009. Highly resolved time series of velocity, energy, and energy flux are all dominated by the semidiurnal internal tide and show pronounced spring-neap cycles. However, the onset of springtime upwelling winds significantly alters the stratification during the record, causing the thermocline depth to shoal from about 100 to 40 m. The time-variable stratification must be accounted for because it significantly affects the energy, energy flux, the vertical modal structures, and the energy distribution among the modes. The internal tide changes from a partly horizontally standing wave to a more freely propagating wave when the thermocline shoals, suggesting more reflection from up canyon early in the observational record. Turbulence, computed from Thorpe scales, is greatest in the bottom 50–150 m and shows a spring-neap cycle. Depth-integrated dissipation is 3 times greater toward the end of the record, reaching 60 mW m−2 during the last spring tide. Dissipation near a submarine ridge is strongly tidally modulated, reaching 10−5 W kg−1 (10–15-m overturns) during spring tide and appears to be due to breaking lee waves. However, the phasing of the breaking is also affected by the changing stratification, occurring when isopycnals are deflected downward early in the record and upward toward the end.

Corresponding author address: Zhongxiang Zhao, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105. E-mail: zzhao@apl.washington.edu
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007a: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007b: Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J. Phys. Oceanogr., 37, 18491858.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. A. Merrifield, 2006: Structure, propagation and mixing of energetic baronlinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 9971018.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., S. Legg, and J. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950.

  • Carter, G. S., 2010: Barotropic and baroclinic M2 tides in the Monterey Bay region. J. Phys. Oceanogr., 40, 17661783.

  • Carter, G. S., and M. C. Gregg, 2002: Intense, variable mixing near the head of Monterey submarine canyon. J. Phys. Oceanogr., 32, 31453165.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., M. C. Gregg, and R.-C. Lien, 2005: Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf. Cont. Shelf Res., 25, 14991520.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613.

  • Doherty, K. W., D. E. Frye, S. P. Liberatore, and J. M. Toole, 1999: A moored profiling instrument. J. Atmos. Oceanic Technol., 16, 18161829.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1982: Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87, 525538.

  • Galbraith, P. S., and D. E. Kelley, 1996: Identifying overturns in CTD profiles. J. Atmos. Oceanic Technol., 13, 688702.

  • Gardner, W. D., 1989: Periodic resuspension in Baltimore Canyon by focusing of internal waves. J. Geophys. Res., 94, 18 18518 194.

  • Garrett, C., and W. H. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297.

  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res., 19, 833846, doi:10.1016/0011-7471(72)90002-2.

    • Search Google Scholar
    • Export Citation
  • Gordon, R. L., and N. F. Marshall, 1976: Submarine canyon internal wave traps? Geophys. Res. Lett., 3, 622624.

  • Gregg, M. C., G. S. Carter, and E. Kunze, 2005: Corrigendum. J. Phys. Oceanogr., 35, 17121715.

  • Gregg, M. C., R. A. Hall, G. S. Carter, M. H. Alford, R.-C. Lien, D. P. Winkel, and D. J. Wain, 2011: Flow and mixing in Ascension, a steep, narrow canyon. J. Geophys. Res.,116, C07016, doi:10.1029/2010JC006610.

  • Hall, P., and A. M. Davies, 2007: Internal tide modeling and the influence of wind effects. Cont. Shelf Res., 27, 13571377, doi:10.1016/j.csr.2006.09.008.

    • Search Google Scholar
    • Export Citation
  • Hall, R. A., and G. S. Carter, 2011: Internal tides in Monterey Submarine Canyon. J. Phys. Oceanogr., 41, 186204.

  • Hickey, B. M., 1995: Coastal submarine canyons. Topographic Interactions in the Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 95–110.

  • Hotchkiss, F. S., and C. Wunsch, 1982: Internal waves in Hudson Canyon with possible geological implications. Deep-Sea Res., 29, 415442.

    • Search Google Scholar
    • Export Citation
  • Hunkins, K., 1988: Mean and tidal currents in Baltimore Canyon. J. Geophys. Res., 93, 69176929.

  • Jachec, S. M., O. B. Fringer, M. G. Gerritsen, and R. L. Street, 2006: Numerical simulation of internal tides and the resulting energetics within Monterey Bay and the surrounding area. Geophys. Res. Lett.,33, L12605, doi:10.1029/2006GL026314.

  • Johnston, T. M. S., D. L. Rudnick, G. S. Carter, R. E. Todd, and S. T. Cole, 2011: Internal tidal beams and mixing near Monterey Bay. J. Geophys. Res., 116, C03017, doi:10.1029/2010JC006592.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. B. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, M. H. Alford, and K. I. Martini, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232.

    • Search Google Scholar
    • Export Citation
  • Key, S. A., 1999: Internal tidal bores in the Monterey Canyon. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 91 pp.

  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey submarine canyon. J. Phys. Oceanogr., 32, 18901913.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910–927.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., G. D. Egbert, J. S. Allen, R. N. Miller, S. Y. Erofeeva, and P. M. Kosro, 2003: The M2 internal tide off Oregon: Inferences from data assimilation. J. Phys. Oceanogr., 33, 17331757.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., J. S. Allen, and G. D. Egbert, 2010: Combined effects of wind-driven upwelling and internal tide on the continental shelf. J. Phys. Oceanogr., 40, 737756.

    • Search Google Scholar
    • Export Citation
  • Lee, I.-H., R.-C. Lien, J. T. Liu, and W.-S. Chuang, 2009: Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. J. Mar. Syst., 76, 383396, doi:10.1016/j.jmarsys.2007.08.005.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. R. Osborn, 1985: Turbulence measurements in a submarine canyon. Cont. Shelf Res., 4, 681698.

  • MacKinnon, J. A., and M. C. Gregg, 2003a: Mixing on the late-summer New England shelf–solibores, shear and stratification. J. Phys. Oceanogr., 33, 14761492.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003b: Shear and baroclinic energy flux on the summer New England shelf. J. Phys. Oceanogr., 33, 14621475.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, J. D. Nash, E. Kunze, and M. A. Merrifield, 2007: Diagnosing a partly-standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett.,34, L17604, doi:10.1029/2007GL029749.

  • Mooers, C. N. K., 1970: The interaction of an internal tide with the frontal zone in a coastal upwelling region. Ph.D. thesis, Oregon State University, 480 pp.

  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570.

    • Search Google Scholar
    • Export Citation
  • Osborne, J. J., A. L. Kurapov, G. D. Egbert, and P. M. Kosro, 2011: Spatial and temporal variability of the M2 internal tide generation and propagation on the Oregon shelf. J. Phys. Oceanogr., 41, 20372062.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. K. Rosenfeld, 1996: Remotely sensed surface currents in Monterey Bay from shore-based HF radar (coastal ocean dynamics application radar). J. Geophys. Res., 101 (C9), 20 66920 686.

    • Search Google Scholar
    • Export Citation
  • Paull, C. K., P. Mitts, W. Ussler III, R. Keaten, and H. G. Greene, 2005: Trail of sand in upper Monterey Canyon: Offshore California. Geol. Soc. Amer. Bull., 117, 11341145, doi:10.1130/B25390.1.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer, 268 pp.

  • Petruncio, E. T., L. K. Rosenfeld, and J. D. Paduan, 1998: Observations of the internal tide in Monterey Canyon. J. Phys. Oceanogr., 28, 18731903.

    • Search Google Scholar
    • Export Citation
  • Petruncio, E. T., J. D. Paduan, and L. K. Rosenfeld, 2002: Numerical simulations of the internal tide in a submarine canyon. Ocean Modell., 4 (3–4), 221248, doi:10.1016/S1463-5003(02)00002-1.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., T. M. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., J. D. Paduan, I. Shulman, J. Kindle, F. L. Bahr, and F. Chavez, 2005: Observations of upwelling and relaxation events in the northern Monterey Bay during August 2000. J. Geophys. Res.,110, C07013, doi:10.1029/2004JC002538.

  • Rosenfeld, L. K., F. B. Schwing, N. Garfield, and D. E. Tracy, 1994: Bifurcated flow from an upwelling center: a cold water source for Monterey Bay. Cont. Shelf Res., 14, 931964, doi:10.1016/0278-4343(94)90058-2.

    • Search Google Scholar
    • Export Citation
  • Shea, R. E., and W. W. Broenkow, 1982: The role of internal tides in nutrient enrichment of Monterey Bay, California. Estuarine Coastal Shelf Sci., 15, 5766.

    • Search Google Scholar
    • Export Citation
  • Slinn, D., and M. Levine, 2003: Modeling internal tides and mixing over ocean ridges. Dynamics of Oceanic Internal Gravity Waves, II: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 59–68.

  • Swart, N. C., S. E. Allen, and B. J. W. Greenan, 2011: Resonant amplification of subinertial tides in a submarine canyon. J. Geophys. Res.,116, C09001, doi:10.1029/2011JC006990.

  • Thorpe, S., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, 286A, 125181.

  • Wunsch, C., and S. Webb, 1979: The climatology of deep ocean internal waves. J. Phys. Oceanogr., 9, 235243.

  • Xu, J. P., and M. A. Noble, 2009: Currents in Monterey Submarine Canyon. J. Geophys. Res.,114, C03004, doi:10.1029/2008JC004992.

  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tides from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 706 157 23
PDF Downloads 451 124 17