Jets and Topography: Jet Transitions and the Impact on Transport in the Antarctic Circumpolar Current

Andrew F. Thompson California Institute of Technology, Pasadena, California, and British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Andrew F. Thompson in
Current site
Google Scholar
PubMed
Close
and
Jean-Baptiste Sallée British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Jean-Baptiste Sallée in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Southern Ocean’s Antarctic Circumpolar Current (ACC) naturally lends itself to interpretations using a zonally averaged framework. Yet, navigation around steep and complicated bathymetric obstacles suggests that local dynamics may be far removed from those described by zonally symmetric models. In this study, both observational and numerical results indicate that zonal asymmetries, in the form of topography, impact global flow structure and transport properties.

The conclusions are based on a suite of more than 1.5 million virtual drifter trajectories advected using a satellite altimetry–derived surface velocity field spanning 17 years. The focus is on sites of “cross front” transport as defined by movement across selected sea surface height contours that correspond to jets along most of the ACC. Cross-front exchange is localized in the lee of bathymetric features with more than 75% of crossing events occurring in regions corresponding to only 20% of the ACC’s zonal extent.

These observations motivate a series of numerical experiments using a two-layer quasigeostrophic model with simple, zonally asymmetric topography, which often produces transitions in the front structure along the channel. Significantly, regimes occur where the equilibrated number of coherent jets is a function of longitude and transport barriers are not periodic. Jet reorganization is carried out by eddy flux divergences acting to both accelerate and decelerate the mean flow of the jets. Eddy kinetic energy is amplified downstream of topography due to increased baroclinicity related to topographic steering. The combination of high eddy kinetic energy and recirculation features enhances particle exchange. These results stress the complications in developing consistent circumpolar definitions of the ACC fronts.

Corresponding author address: Andrew Thompson, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: andrewt@caltech.edu

Abstract

The Southern Ocean’s Antarctic Circumpolar Current (ACC) naturally lends itself to interpretations using a zonally averaged framework. Yet, navigation around steep and complicated bathymetric obstacles suggests that local dynamics may be far removed from those described by zonally symmetric models. In this study, both observational and numerical results indicate that zonal asymmetries, in the form of topography, impact global flow structure and transport properties.

The conclusions are based on a suite of more than 1.5 million virtual drifter trajectories advected using a satellite altimetry–derived surface velocity field spanning 17 years. The focus is on sites of “cross front” transport as defined by movement across selected sea surface height contours that correspond to jets along most of the ACC. Cross-front exchange is localized in the lee of bathymetric features with more than 75% of crossing events occurring in regions corresponding to only 20% of the ACC’s zonal extent.

These observations motivate a series of numerical experiments using a two-layer quasigeostrophic model with simple, zonally asymmetric topography, which often produces transitions in the front structure along the channel. Significantly, regimes occur where the equilibrated number of coherent jets is a function of longitude and transport barriers are not periodic. Jet reorganization is carried out by eddy flux divergences acting to both accelerate and decelerate the mean flow of the jets. Eddy kinetic energy is amplified downstream of topography due to increased baroclinicity related to topographic steering. The combination of high eddy kinetic energy and recirculation features enhances particle exchange. These results stress the complications in developing consistent circumpolar definitions of the ACC fronts.

Corresponding author address: Andrew Thompson, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: andrewt@caltech.edu
Save
  • Arbic, B. K., and G. R. Flierl, 2004: Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr., 34, 7793.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101, 36753696.

    • Search Google Scholar
    • Export Citation
  • Boland, E. J., A. F. Thompson, E. Shuckburgh, and P. H. Haynes, 2012: The formation of non-zonal jets over sloped topography. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., and J. Pedlosky, 2003: Local baroclinic instabilities over variable topography in channel flows. J. Phys. Oceanogr., 33, 207219.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, D. L. Witter, and J. G. Richman, 1990: Geosat altimetery observations of the surface circulation of the Southern Ocean. J. Geophys. Res., 95, 17 87717 903.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large ocean eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., and A. C. Naveira Garabato, 2008: The zonal dimension of the Indian Ocean meridional overturning circulation. J. Phys. Oceanogr., 38, 359379.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy mixing across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, doi:10.1029/2009JC005349.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1997a: Why potential vorticity is not conserved along mean streamlines in a numerical Southern Ocean. J. Phys. Oceanogr., 27, 12861299.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1997b: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 22192232.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport 1: Stratosphere. J. Geophys. Res., 105, 22 77722 794.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and E. R. Ash, 2001: Eddy forcing of the mean flow in the Southern Ocean. J. Geophys. Res., 106, 27132722.

  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953.

  • Juckes, M. N., and M. E. McIntyre, 1987: A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature, 328, 590596.

    • Search Google Scholar
    • Export Citation
  • Langlais, C., S. R. Rintoul, and A. Schiller, 2011: Variability and mesoscale activity of the Southern Ocean fronts: Identification of a circumpolar coordinate system. Ocean Modell., 39, 7996.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y. D., T. K. Chereskin, J. Sprintall, and J. L. McClean, 2011: Near-surface eddy heat and momentum fluxes in the Antarctic Circumpolar Current in Drake Passage. J. Phys. Oceanogr., 41, 1385–1407.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and K. Speer, 2010: Topography, jets and eddy mixing in the Southern Ocean. J. Mar. Res., 68, 479502.

  • MacCready, P., and P. B. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31, 14271439.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmèn, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355.

  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permiability diagnosed in area coordinates. J. Atmos. Sci., 53, 15241537.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 2008: Sensitivity of global mixing and fluxes to isolated transport barriers. J. Atmos. Sci., 65, 38003818.

  • Naveira Garabato, A. C., R. Ferrari, and K. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Nencioli, F., F. d’Ovidio, A. M. Doglioli, and A. A. Petrenko, 2011: Surface coastal circulation patterns by in-situ detection of Lagrangian coherent structures. Geophys. Res. Lett., 38, L17604, doi:10.1029/2011GL048815.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and M. Visbeck, 2005: A model of the zonally averaged stratification and overturning in the Southern Ocean. J. Phys. Oceanogr., 35, 11901205.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. W. Whitworth III, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42, 641673.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., and I. Held, 1996: The diffusive approximation for eddy fluxes in baroclinically unstable jets. J. Atmos. Sci., 53, 12621272.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Radko, T., and J. Marshall, 2006: The Antarctic Circumpolar Current in three dimensions. J. Phys. Oceanogr., 36, 651669.

  • Rio, M.-H., P. Schaeffer, F. Hernandez, and J. M. Lemoine, 2005: The estimation of the ocean mean dynamic topography through the combination of altimetric data, in situ measurements and GRACE geoid: From global to regional studies. Proc. GOCINA Int. Workshop, Luxembourg, Centre Européen de Géodynamique et de Séismologie.

  • Sallée, J. B., K. Speer, and R. Morrow, 2008: Southern Ocean fronts and their variability to climate modes. J. Climate, 21, 30203039.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nat. Geosci., 3, 273279.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and S. R. Rintoul, 2011: Mean-flow and topography control on surface eddy-mixing in the Southern Ocean. J. Mar. Res., 69, 753777.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., and P. H. Haynes, 2003: Diagnosing transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15, 33423357.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: Eddy amplitudes in baroclinic turbulence driven by nonzonal mean flow: Shear dispersion of potential vorticity. J. Phys. Oceanogr., 37, 10371050.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Henning, I. N. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469, 1348.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2007a: On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res., 112, C07030, doi:10.1029/2006JC004072.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2007b: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res., 114, C11018, doi:10.1029/2008JC005108.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278.

  • Thompson, A. F., and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143231.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and K. J. Richards, 2011: Low frequency variability of Southern Ocean jets. J. Geophys. Res., 116, C09022, doi:10.1029/2010JC006749.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., P. H. Haynes, C. Wilson, and K. J. Richards, 2010: Rapid Southern Ocean front transitions in an eddy-resolving ocean GCM. Geophys. Res. Lett., 37, L23602, doi:10.1029/2010GL045386.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. II, 42, 477500.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., M. H. England, S. R. Rintoul, G. Madec, J. Le Sommer, and J.-M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Sci., 3, 491507.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289.

    • Search Google Scholar
    • Export Citation
  • Witter, D. L., and D. B. Chelton, 1998: Eddy–mean flow interaction in zonal oceanic jet flow along zonal ridge topography. J. Phys. Oceanogr., 28, 20192039.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1271 323 39
PDF Downloads 935 220 9