Influence of Wind Forcing on Modulation and Breaking of One-Dimensional Deep-Water Wave Groups

Alina Galchenko Swinburne University of Technology, Melbourne, Victoria, Australia

Search for other papers by Alina Galchenko in
Current site
Google Scholar
PubMed
Close
,
Alexander V. Babanin Swinburne University of Technology, Melbourne, Victoria, Australia

Search for other papers by Alexander V. Babanin in
Current site
Google Scholar
PubMed
Close
,
Dmitry Chalikov Swinburne University of Technology, Melbourne, Victoria, Australia

Search for other papers by Dmitry Chalikov in
Current site
Google Scholar
PubMed
Close
,
I. R. Young Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by I. R. Young in
Current site
Google Scholar
PubMed
Close
, and
Brian K. Haus University of Miami, Coral Gables, Florida

Search for other papers by Brian K. Haus in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Evolution of nonlinear wave groups to breaking under wind forcing was studied by means of a fully nonlinear numerical model and in a laboratory experiment. Dependence of distance to breaking and modulation depth (height ratio of the highest and the lowest waves in a group) on wind forcing was described. It was shown that in the presence of a certain wind forcing both distance to breaking and modulation depth decrease; the latter signifies slowing down of the instability growth. It was also shown that wind forcing significantly reduces the energy loss in a single breaking event.

Corresponding author address: Alina Galchenko, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia. E-mail: a08091985@gmail.com

Abstract

Evolution of nonlinear wave groups to breaking under wind forcing was studied by means of a fully nonlinear numerical model and in a laboratory experiment. Dependence of distance to breaking and modulation depth (height ratio of the highest and the lowest waves in a group) on wind forcing was described. It was shown that in the presence of a certain wind forcing both distance to breaking and modulation depth decrease; the latter signifies slowing down of the instability growth. It was also shown that wind forcing significantly reduces the energy loss in a single breaking event.

Corresponding author address: Alina Galchenko, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122, Australia. E-mail: a08091985@gmail.com
Save
  • Alber, I. E., 1978: The effects of randomness on the stability of two-dimensional wavetrains. Proc. Roy. Soc. London, A363, 525–546.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., 2009: Breaking of ocean surface waves. Acta Phys. Slovaca, 59, 305–535.

  • Babanin, A. V., I. R. Young, and M. L. Banner, 2001: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res., 106C, 11 659–11 676.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., M. L. Banner, I. R. Young, and M. A. Donelan, 2007a: Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking. J. Phys. Oceanogr., 37, 2764–2775.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., D. Chalikov, I. Young, and I. Savelyev, 2007b: Predicting the breaking onset of surface water waves. Geophys. Res. Lett., 34, L07605, doi:10.1029/2006GL029135.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., D. Chalikov, I. Young, and I. Savelyev, 2010: Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J. Fluid Mech., 644, 433–463.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., T. Waseda, T. Kinoshita, and A. Toffoli, 2011a: Wave breaking in directional fields. Phys. Oceanogr., 41, 145–156.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., T. Waseda, I. Shugan, and H.-H. Hwung, 2011b: Modulational instability in directional wave fields and extreme wave events. Proc. 30th Int. Conf. on Ocean, Offshore and Arctic Engineering (OMAE2011), Rotterdam, Netherlands, American Society of Mechanical Engineers, OMAE2011-49540.

  • Banner, M. L., A. V. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30, 3145–3160.

    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., and J. E. Feir, 1967: The disintegration of wave trains in deep water. Part 1. Theory. J. Fluid Mech., 27, 417–430.

    • Search Google Scholar
    • Export Citation
  • Bliven, L., N. Huang, and S. Long, 1986: Experimental study of the influence of wind on Benjamin-Feir sideband instability. J. Fluid Mech., 162, 237–260.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., and Coauthors, 2007: Wave modeling—The state of the art. Prog. Oceanogr., 75, 603–674.

  • Chalikov, D., and D. Sheinin, 2005: Modelling extreme waves based on equations of potential flow with a free surface. Comput. Phys., 210, 247–273.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D., and S. Rainchik, 2011: Coupled numerical modelling of wind and waves and a theory of wave boundary layer. Bound.-Layer Meteor., 138, 1–41, doi:10.1007/s10546-010-9543-7.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, M. L. Banner, and C. McCormick, 2005: Wave-follower field measurements of the wind-input spectral function. Part I: Measurements and calibrations. J. Atmos. Oceanic Technol., 22, 799–813.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-follower measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 1672–1688.

    • Search Google Scholar
    • Export Citation
  • Galchenko, A., A. V. Babanin, D. Chalikov, I. R. Young, and T. W. Hsu, 2010: Modulational instabilities and breaking strength for deep-water wave groups. J. Phys. Oceanogr., 40, 2313–2324.

    • Search Google Scholar
    • Export Citation
  • Guan, C., W. Hu, J. Sun, and R. Li, 2007: The whitecap coverage model from breaking dissipation parametrizations of wind waves. J. Geophys. Res., 112, C05031, doi:10.1029/2006JC003714.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. Xu, and J. Wu, 1989: Breaking of wind-generated waves: Breaking and characteristics. J. Fluid Mech., 202, 177–200.

    • Search Google Scholar
    • Export Citation
  • Kharif, C., R. A. Kraenkel, M. A. Manna, and R. Thomas, 2010: The modulational instability in deep water under the action of wind and dissipation. J. Fluid Mech., 664, 138–149.

    • Search Google Scholar
    • Export Citation
  • Manasseh, R., A. V. Babanin, C. Forbes, K. Rickards, I. Bobevski, and A. Ooi, 2006: Passive acoustic determination of wave-breaking events and their severity across the spectrum. J. Atmos. Oceanic Technol., 23, 599–618.

    • Search Google Scholar
    • Export Citation
  • McLean, J. W., 1982a: Instabilities of finite-amplitude gravity waves on water of finite depth. J. Fluid Mech., 114, 331–341.

  • McLean, J. W., 1982b: Instabilities of finite-amplitude water waves. J. Fluid Mech., 114, 315–330.

  • Monahan, E. C., 1971: Oceanic whitecaps. J. Phys. Oceanogr., 1, 139–144.

  • Mori, N., M. Onorato, and P. A. E. M. Janssen, 2011: On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr., 41, 1484–1497.

    • Search Google Scholar
    • Export Citation
  • Onorato, M., and Coauthors, 2009a: Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three-dimensional wave basin. J. Fluid Mech., 637, 235–257.

    • Search Google Scholar
    • Export Citation
  • Onorato, M., and Coauthors, 2009b: Statistical properties of directional ocean waves, the role of modulational instability in the formation of extreme events. Phys. Rev. Lett., 102, 114502, doi:10.1103/PhysRevLett.102.114502.

    • Search Google Scholar
    • Export Citation
  • Savelyev, I., B. K. Haus, and M. A. Donelan, 2011: Experimental study on wind-wave momentum flux in strongly forced conditions. J. Phys. Oceanogr., 41, 1328–1344.

    • Search Google Scholar
    • Export Citation
  • Segur, H., D. Henderson, J. Carter, J. Hammack, C.-M. Li, D. Pfeiff, and K. Socha, 2005: Stabilizing the Benjamin-Feir instability. J. Fluid Mech., 539, 229–271.

    • Search Google Scholar
    • Export Citation
  • Stolte, S., 1992: Wave breaking characteristics deduced from water staff measurements. Forschungsanstalt der Bendeswehr fur Wasserschall und Geophysik Tech. Rep. FB 1992-4, 21 pp.

  • Stramska, M., and T. Petelski, 2003: Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res., 108, 3086, doi:10.1029/2002JC001321.

    • Search Google Scholar
    • Export Citation
  • Toffoli, A., A. V. Babanin, T. Waseda, and M. Onorato, 2010: The maximum steepness of oceanic waves. Geophys. Res. Lett., 37, L05603, doi:10.1029/2009GL041771.

    • Search Google Scholar
    • Export Citation
  • Touboul, J., and C. Kharif, 2010: Nonlinear evolution of the modulational instability under weak forcing and damping. Nat. Hazards Earth Syst. Sci., 10, 2589–2597.

    • Search Google Scholar
    • Export Citation
  • Trulsen, K., and K. Dysthe, 1992: Action of windstress and breaking on the evolution of a wavetrain. Breaking Waves, M. Banner and R. Grimshaw, Eds., Springer-Verlag, 243–249.

  • Waseda, T., and M. Tulin, 1999: Experimental study of the stability of deep-water wave trains including wind effects. J. Fluid Mech., 401, 55–84.

    • Search Google Scholar
    • Export Citation
  • Waseda, T., T. Kinoshita, and H. Tamura, 2009: Interplay of resonant and quasi-resonant interaction of the directional ocean waves. J. Phys. Oceanogr., 39, 2351–2362.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 2000: Bubbles produced by breaking waves in fresh and salt waters. J. Phys. Oceanogr., 30, 1809–1813.

  • Yuan, Y., L. Han, F. Hua, S. Zhang, F. Qiao, Y. Yang, and C. Xia, 2009: The statistical theory of breaking entrainment depth and surface whitecap coverage of real sea waves. J. Phys. Oceanogr., 39, 143–161.

    • Search Google Scholar
    • Export Citation
  • Zhao, D., and Y. Toba, 2001: Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603–616.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 484 128 21
PDF Downloads 161 57 3