Abstract
Evolution of nonlinear wave groups to breaking under wind forcing was studied by means of a fully nonlinear numerical model and in a laboratory experiment. Dependence of distance to breaking and modulation depth (height ratio of the highest and the lowest waves in a group) on wind forcing was described. It was shown that in the presence of a certain wind forcing both distance to breaking and modulation depth decrease; the latter signifies slowing down of the instability growth. It was also shown that wind forcing significantly reduces the energy loss in a single breaking event.