• Beal, L. M., , W. P. M. De Ruijter, , A. Biastoch, , and R. Zahn, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , C. W. Böning, , and J. R. E. Lutjeharms, 2008: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489492, doi:10.1038/nature07426.

    • Search Google Scholar
    • Export Citation
  • Boudra, D. B., , and W. P. M. De Ruijter, 1986: The wind-driven circulation in the South Atlantic-Indian Ocean—II. Experiments using a multi-layer numerical model. Deep-Sea Res., 33, 447482.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , and M. S. Lozier, 1994: A closer look at particle exchange in the Gulf Stream. J. Phys. Oceanogr., 24, 13991418.

  • Brambilla, E., , and L. D. Talley, 2006: Surface drifter exchange between the North Atlantic subtropical and subpolar gyres. J. Geophys. Res., 111, C07026, doi:10.1029/2005JC003146.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., , and D. B. Boudra, 1988: Dynamics of Agulhas Retroflection and ring formation in a numerical model. Part II: Energetics and ring formation. J. Phys. Oceanogr., 18, 304319.

    • Search Google Scholar
    • Export Citation
  • Dencausse, G., , M. Arhan, , and S. Speich, 2010: Spatio-temporal characteristics of the Agulhas Current retroflection. Deep-Sea Res. I, 57, 13921405.

    • Search Google Scholar
    • Export Citation
  • Dencausse, G., , M. Arhan, , and S. Speich, 2011: Is there a continuous subtropical front south of Africa? J. Geophys. Res., 116, C02027, doi:10.1029/2010JC006587.

    • Search Google Scholar
    • Export Citation
  • De Ruijter, W. P. M., 1982: Asymptotic analysis of the Agulhas and Brazil Current systems. J. Phys. Oceanogr., 12, 361373.

  • De Ruijter, W. P. M., , A. Biastoch, , S. S. Drijfhout, , J. R. E. Lutjeharms, , R. P. Matano, , T. Pichevin, , P. J. Van Leeuwen, , and W. Weijer, 1999: Indian-Atlantic interocean exchange: Dynamics, estimation and impact. J. Geophys. Res., 104 (C9), 20 88520 910.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and W. P. M. De Ruijter, 2001: On the physics of the Agulhas Current: Steady retroflection regimes. J. Phys. Oceanogr., 31, 29712985.

    • Search Google Scholar
    • Export Citation
  • Easter, R. C., 1993: Two modified versions of Bott’s positive-definite numerical advection scheme. Mon. Wea. Rev., 121, 297304.

  • Esler, J. G., 2008a: Robust and leaky transport barriers in unstable baroclinic flows. Phys. Fluids, 20, 116602, doi:10.1063/1.3013631.

  • Esler, J. G., 2008b: The turbulent equilibration of an unstable baroclinic jet. J. Fluid Mech., 599, 241268.

  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the World Ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89112.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 (C4), 50375046.

  • Hallberg, R., 1997: Stable split time stepping schemes for large-scale ocean modeling. J. Comput. Phys., 135, 5465.

  • Hermes, J. C., , C. J. C. Reason, , and J. R. E. Lutjeharms, 2007: Modeling the variability of the greater Agulhas Current system. J. Climate, 20, 31313146.

    • Search Google Scholar
    • Export Citation
  • Ou, H. W., , and W. P. M. De Ruijter, 1986: Separation of an inertial boundary current from a curved coastline. J. Phys. Oceanogr., 16, 280289.

    • Search Google Scholar
    • Export Citation
  • Penven, P., , S. Herbette, , and M. Rouault, 2011: Ocean modelling in the Agulhas Current system. Proc. Nansen-Tutu Conf., Cape Town, South Africa, Nansen-Tutu Centre for Marine Environmental Research.

  • Risien, C. M., , and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., , P. Penven, , and B. Pohl, 2009: Warming in the Agulhas Current system since the 1980’s. Geophys. Res. Lett., 36, L12602, doi:10.1029/2009GL037987.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., , L. J. Pratt, , and M. S. Lozier, 2011: Near-surface transport pathways in the North Atlantic Ocean: Looking for throughput from the subtropical to the subpolar gyre. J. Phys. Oceanogr., 41, 911925.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., Jr., 1996: On the eddy field in the Agulhas Retroflection, with some global considerations. J. Geophys. Res., 101 (C7), 16 25916 271.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., , S. Wijffels, , R. Molcard, , and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, doi:10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Van Sebille, E., , C. N. Barron, , A. Biastoch, , P. J. van Leeuwen, , F. C. Vossepoel, , and W. P. M. de Ruijter, 2009a: Relating Agulhas leakage to the Agulhas Current retroflection location. Ocean Sci., 5, 511521, doi:10.5194/os-5-511-2009.

    • Search Google Scholar
    • Export Citation
  • Van Sebille, E., , A. Biastoch, , P. J. Van Leeuwen, , and W. P. M. De Ruijter, 2009b: A weaker Agulhas Current leads to more Agulhas leakage. Geophys. Res. Lett., 36, L03601, doi:10.1029/2008GL036614.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., , W. P. M. De Ruijter, , A. Sterl, , and S. S. Drijfhout, 2002: Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy. Global Planet. Change, 34, 293311.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 10
PDF Downloads 37 37 8

A New Regime of the Agulhas Current Retroflection: Turbulent Choking of Indian–Atlantic leakage

View More View Less
  • 1 Institute for Marine and Atmospheric Research Utrecht, Utrecht, Netherlands
© Get Permissions
Restricted access

Abstract

An analysis of the Indian Ocean circulation and the Agulhas Current retroflection is carried out using a primitive equation model with simplified coastline and flat bottom. Four configurations with 0.25° and 0.1° horizontal resolution and in barotropic and baroclinic cases are considered. The wind stress is taken as control parameter to increase the inertia of the currents. The volume transport of the Indonesian Throughflow, Mozambique Channel, and Agulhas Current are found to increase linearly with the wind stress strength, and three nonlinear retroflection regimes are found. A viscous and an inertial regime had already been documented, but a new turbulent regime appears at large wind stress amplitude. In this turbulent regime, the volume of Agulhas leakage reaches a plateau because of strong mesoscale variability and, in contrast to the other regimes, does not depend on the wind stress magnitude. The physical mechanism causing the plateau is shown to be associated with the cross-jet exchange of Indian Ocean water and water from the Antarctic Circumpolar Current. In the turbulent regime, the permeability of the Agulhas Return Current to material transport increases and the Indian Ocean water available for the Agulhas leakage decreases.

Corresponding author address: Dewi Le Bars, IMAU, Utrecht University, P.O. Box 80.005, 3508 TA Utrecht, Netherlands. E-mail: d.lebars@uu.nl

Abstract

An analysis of the Indian Ocean circulation and the Agulhas Current retroflection is carried out using a primitive equation model with simplified coastline and flat bottom. Four configurations with 0.25° and 0.1° horizontal resolution and in barotropic and baroclinic cases are considered. The wind stress is taken as control parameter to increase the inertia of the currents. The volume transport of the Indonesian Throughflow, Mozambique Channel, and Agulhas Current are found to increase linearly with the wind stress strength, and three nonlinear retroflection regimes are found. A viscous and an inertial regime had already been documented, but a new turbulent regime appears at large wind stress amplitude. In this turbulent regime, the volume of Agulhas leakage reaches a plateau because of strong mesoscale variability and, in contrast to the other regimes, does not depend on the wind stress magnitude. The physical mechanism causing the plateau is shown to be associated with the cross-jet exchange of Indian Ocean water and water from the Antarctic Circumpolar Current. In the turbulent regime, the permeability of the Agulhas Return Current to material transport increases and the Indian Ocean water available for the Agulhas leakage decreases.

Corresponding author address: Dewi Le Bars, IMAU, Utrecht University, P.O. Box 80.005, 3508 TA Utrecht, Netherlands. E-mail: d.lebars@uu.nl
Save