• Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588.

  • Chassignet, E. P., , L. T. Smith, , G. R. Halliwell, , and R. Bleck, 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33, 25042526.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., , and X. Liu, 1993: Observations and dynamics of semiannual and annual sea levels near the eastern equatorial Indian Ocean boundary. J. Phys. Oceanogr., 23, 386399.

    • Search Google Scholar
    • Export Citation
  • Cresswell, G., , A. Frische, , J. Peterson, , and D. Quadfasel, 1993: Circulation in the Timor Sea. J. Geophys. Res., 98, 14 37914 389.

  • Drushka, K., , J. Sprintall, , S. T. Gille, , and I. Brodjonegoro, 2010: Vertical structure of Kelvin waves in the Indonesian Throughflow exit passages. J. Phys. Oceanogr., 40, 19651987.

    • Search Google Scholar
    • Export Citation
  • Durland, T. S., , and B. Qiu, 2003: Transmission of subinertial Kelvin waves through a strait. J. Phys. Oceanogr., 33, 13371350.

  • Gordon, A. L., 2005: Oceanography of the Indonesian Seas and their throughflow. Oceanography, 18, 1427.

  • Gordon, A. L., , R. D. Susanto, , and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 33253328.

  • Gordon, A. L., , R. D. Susanto, , and K. Vranes, 2003: Cool Indonesian Throughflow as a consequence of restricted surface layer flow. Nature, 425, 824828.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., , R. D. Susanto, , A. Ffield, , B. A. Huber, , W. Pranowo, , and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004 to 2006. Geophys. Res. Lett., 35, L24605, doi:10.1029/2008GL036372.

    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708728.

    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550.

  • Hautala, S. L., , J. Sprintall, , J. T. Potemra, , A. G. Ilahude, , J. C. Chong, , W. Pandoe, , and N. Bray, 2001: Velocity structure and transport of the Indonesian Throughflow in the major straits restricting flow into the Indian Ocean. J. Geophys. Res., 106, 19 52719 546.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., , E. J. Metzger, , J. Sprintall, , S. N. Riedlinger, , R. A. Arnone, , T. Shinoda, , and X. Xu, 2011: Circulation in the Philippine Archipelago simulated by 1/12° and 1/25° global HYCOM and EAS NCOM. Oceanography, 24, 2847.

    • Search Google Scholar
    • Export Citation
  • Iskandar, I., , T. Tozuka, , H. Sasaki, , Y. Masumoto, , and T. Yamagata, 2006: Intraseasonal variations of surface and subsurface currents off Java as simulated in a high-resolution ocean general circulation model. J. Geophys. Res., 111, C12015, doi:10.1029/2006JC003486.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kara, A. B., , A. J. Wallcraft, , P. J. Martin, , and R. L. Pauley, 2009: Optimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000–2006. J. Mar. Syst., 78, 119131.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95 (C4), 51835217.

  • Lee, T., , I. Fukumori, , D. Menemenlis, , Z. Xing, , and L. Fu, 2002: Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr., 32, 14041429.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., 2002: Effects of interannual variability in the eastern Indian Ocean on the Indonesian throughflow. J. Oceanogr., 58, 175182.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., , and T. Yamagata, 1993: Simulated seasonal circulation in the Indonesian Seas. J. Geophys. Res., 98 (C7), 12 50112 509.

  • McClean, J. L., , D. P. Ivanova, , and J. Sprintall, 2005: Remote origins of interannual variability in the Indonesian Throughflow region from data and a global Parallel Ocean Program simulation. J. Geophys. Res., 110, C10013, doi:10.1029/2004JC002477.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., , H. E. Hurlburt, , X. Xu, , J. F. Shriver, , A. L. Gordon, , J. Sprintall, , R. D. Susanto, , and H. M. van Aken, 2010: Simulated and observed circulation in the Indonesian Seas: 1/12° global HYCOM and INSTANT observations. Dyn. Atmos. Oceans, 50, 275300, doi:10.1016/j.dynatmoce.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1979: On the annual Rossby wave in the tropical North Pacific Ocean. J. Phys. Oceanogr., 9, 663674.

  • Molcard, R., , M. Fieux, , and A. G. Ilahude, 1996: The Indo–Pacific throughflow in the Timor Passage. J. Geophys. Res., 101, 12 41112 420.

    • Search Google Scholar
    • Export Citation
  • Molcard, R., , M. Fieux, , and F. Syamsudin, 2001: The throughflow within Ombai Strait. Deep-Sea Res., 48, 12371253.

  • Moore, D. W., , and J. P. McCreary, 1990: Excitation of intermediate-frequency equatorial waves at a western boundary: With application to observations from the western Indian Ocean. J. Geophys. Res., 95, 52195231.

    • Search Google Scholar
    • Export Citation
  • Murray, S. P., , and D. Arief, 1988: Throughflow into the Indian Ocean through the Lombok Strait, January 1985–January 1986. Nature, 333, 444447.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., , A. J. Busalacchi, , and J. Beauchamp, 1998: Seasonal-to-interannual effects of the Indonesian throughflow on the tropical Indo-Pacific basin. J. Geophys. Res., 103, 21 42521 441.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 1999: Seasonal variations of the Pacific to Indian Ocean throughflow. J. Phys. Oceanogr., 29, 29302944.

  • Potemra, J. T., 2001: The potential role of equatorial Pacific winds on southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106, 24072422.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., , and N. Schneider, 2008: Interannual variations of the Indonesian throughflow. J. Geophys. Res., 112, C05035, doi:10.1029/2006JC003808.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., , R. Lukas, , and G. Mitchum, 1997: Large-scale estimation of transport from the Pacific to the Indian Ocean. J. Geophys. Res., 102, 27 79527 812.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., , S. L. Hautala, , J. Sprintall, , and W. Pandoe, 2002: Interaction between the Indonesian Seas and the Indian Ocean in observations and numerical models. J. Phys. Oceanogr., 32, 18381854.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., , J. Teixeira, , M. Peng, , T. F. Hogan, , and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15, 99108.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , B. N. Goswami, , P. N. Vinayachandran, , and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., , S. E. Wijffels, , J. Sprintall, , R. Molcard, , and P. R. Oke, 2010: Pathways of intraseasonal variability in the Indonesian Throughflow region. Dyn. Atmos. Oceans, 50, 174200, doi:10.1016/j.dynatmoce.2010.02.003.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., 1998: The Indonesian Throughflow and the global climate system. J. Climate, 11, 676689.

  • Shinoda, T., , and W. Han, 2005: Influence of Indian Ocean dipole on atmospheric subseasonal variability. J. Climate, 18, 38913909.

  • Shinoda, T., , H. H. Hendon, , and M. A. Alexander, 2004: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res., 51, 619635.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , P. E. Roundy, , and G. N. Kiladis, 2008: Variability of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 38, 921944.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , H. E. Hurlburt, , and E. J. Metzger, 2011: Anomalous Tropical Ocean Circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001, doi:10.1029/2011JC007304.

    • Search Google Scholar
    • Export Citation
  • Song, Q., , G. A. Vecchi, , and A. J. Rosati, 2007: The role of the Indonesian Throughflow in the Indo-Pacific climate variability in the GFDL Coupled Climate Model. J. Climate, 20, 24342451.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., , A. L. Gordon, , R. Murtugudde, , and R. D. Susanto, 2000: A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian Seas in May 1997. J. Geophys. Res., 105 (C7), 17 21717 230.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and Coauthors, 2004: INSTANT: A new international array to measure the Indonesian Throughflow. Eos, Trans. Amer. Geophys. Union, 85, 369, doi:10.1029/2004EO390002.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., , S. Wijffels, , R. Molcard, and I. Jaya, 2009: Direct estimates of Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, doi:10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Syamsudin, F., , A. Kaneko, , and D. B. Haidvogel, 2004: Numerical and observational estimates of Indian Ocean Kelvin wave intrusion into Lombok Strait. Geophys. Res. Lett., 31, L24307, doi:10.1029/2004GL021227.

    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., , H. E. Hurlburt, , J. J. O’Brien, , and J. F. Shriver, 2001: The dynamics of the East Australian Current system: The Tasman Front, the East Auckland Current, and the East Cape Current. J. Phys. Oceanogr., 31, 29172943.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., , T. Kagimoto, , Y. Masumoto, , and T. Yamagata, 2002: Simulated multiscale variations in the western tropical Pacific: The Mindanao Dome revisited. J. Phys. Oceanogr., 32, 13381359.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , A. M. Moore, , J. P. Loschnigg, , and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–1998. Nature, 401, 356360.

    • Search Google Scholar
    • Export Citation
  • White, W. B., , Y. M. Tourre, , M. Barlow, , and M. Dettinger, 2003: A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific basin. J. Geophys. Res., 108, 3070, doi:10.1029/2002JC001490.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., , and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 12321253.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264.

  • Wyrtki, K., 1987: Indonesian through flow and the associated pressure gradient. J. Geophys. Res., 92 (C12), 12 94112 946.

  • Xie, P., , and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model prediction. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., , and J. T. Potemra, 2006: Generation mechanism for the intraseasonal variability in the Indo-Australian basin. J. Geophys. Res., 111, C01013, doi:10.1029/2005JC003023.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., , and W. Han, 2006: Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 930944.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2004: Calculation of radiative flux profiles from the surface to top-of-atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., , and R. Murtugudde, 2010: Influences of Madden-Julian oscillations on the eastern Indian Ocean and the maritime continent. Dyn. Atmos. Oceans, 50, 257274.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 18
PDF Downloads 81 81 13

Seasonal Variation of the Indonesian Throughflow in Makassar Strait

View More View Less
  • 1 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 2 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado
  • | 3 Naval Research Laboratory, Stennis Space Center, Mississippi
© Get Permissions
Restricted access

Abstract

The seasonal variation of Indonesian Throughflow (ITF) transport is investigated using ocean general circulation model experiments with the Hybrid Coordinate Ocean Model (HYCOM). Twenty-eight years (1981–2008) of ⅓° Indo-Pacific basin HYCOM simulations and three years (2004–06) from a global HYCOM simulation are analyzed. Both models are able to simulate the seasonal variation of upper-ocean currents and the total transport through Makassar Strait measured by International Nusantara Stratification and Transport (INSTANT) moorings reasonably well. The annual cycle of upper-ocean currents is then calculated from the Indo-Pacific HYCOM simulation. The reduction of southward currents at Makassar Strait during April–May and October–November is evident, consistent with the INSTANT observations. Analysis of the upper-ocean currents suggests that the reduction in ITF transport during April–May and October–November results from the wind variation in the tropical Indian Ocean through the generation of a Wyrtki jet and the propagation of coastal Kelvin waves, while the subsequent recovery during January–March originates from upper-ocean variability associated with annual Rossby waves in the Pacific that are enhanced by western Pacific winds. These processes are also found in the global HYCOM simulation during the period of the INSTANT observations. The model experiments forced with annual-mean climatological wind stress in the Pacific and 3-day mean wind stress in the Indian Ocean show the reduction of southward currents at Makassar Strait during October–November but no subsequent recovery during January–March, confirming the relative importance of wind variations in the Pacific and Indian Oceans for the ITF transport in each season.

Corresponding author address: Toshiaki Shinoda, Naval Research Laboratory, Stennis Space Center, MS 39529. E-mail: toshiaki.shinoda@nrlssc.navy.mil

Abstract

The seasonal variation of Indonesian Throughflow (ITF) transport is investigated using ocean general circulation model experiments with the Hybrid Coordinate Ocean Model (HYCOM). Twenty-eight years (1981–2008) of ⅓° Indo-Pacific basin HYCOM simulations and three years (2004–06) from a global HYCOM simulation are analyzed. Both models are able to simulate the seasonal variation of upper-ocean currents and the total transport through Makassar Strait measured by International Nusantara Stratification and Transport (INSTANT) moorings reasonably well. The annual cycle of upper-ocean currents is then calculated from the Indo-Pacific HYCOM simulation. The reduction of southward currents at Makassar Strait during April–May and October–November is evident, consistent with the INSTANT observations. Analysis of the upper-ocean currents suggests that the reduction in ITF transport during April–May and October–November results from the wind variation in the tropical Indian Ocean through the generation of a Wyrtki jet and the propagation of coastal Kelvin waves, while the subsequent recovery during January–March originates from upper-ocean variability associated with annual Rossby waves in the Pacific that are enhanced by western Pacific winds. These processes are also found in the global HYCOM simulation during the period of the INSTANT observations. The model experiments forced with annual-mean climatological wind stress in the Pacific and 3-day mean wind stress in the Indian Ocean show the reduction of southward currents at Makassar Strait during October–November but no subsequent recovery during January–March, confirming the relative importance of wind variations in the Pacific and Indian Oceans for the ITF transport in each season.

Corresponding author address: Toshiaki Shinoda, Naval Research Laboratory, Stennis Space Center, MS 39529. E-mail: toshiaki.shinoda@nrlssc.navy.mil
Save