SSH Wavenumber Spectra in the North Pacific from a High-Resolution Realistic Simulation

Hideharu Sasaki Earth Simulator Center, JAMSTEC, Yokohama, Japan

Search for other papers by Hideharu Sasaki in
Current site
Google Scholar
PubMed
Close
and
Patrice Klein Laboratoire de Physique des Océans, Ifremer/CNRS/UBO/IRD, Plouzané, France

Search for other papers by Patrice Klein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Following recent studies based on altimetric data, this paper analyses the spectral characteristics of the sea surface height (SSH) using a new realistic simulation of the North Pacific Ocean with high resolution ( in the horizontal and 100 vertical levels). This simulation resolves smaller scales (down to ≈10 km) than altimetric data (limited to 70 km because of the noise level). In high eddy kinetic energy (EKE) regions (as in the western part), SSH spectral slope almost follows a k−4 (with k the wavenumber) or slightly steeper law in agreement with altimeter studies. The new result is that, unlike altimeter studies, such a k−4 slope is also observed in low EKE regions (as in the eastern part). In these regions, this slope mostly concerns scales not well resolved by altimetric data. Such k−4 SSH spectral slopes are weaker from what is expected from quasigeostrophic turbulence theory but closer to surface quasigeostrophic (SQG) turbulence theory. The consequence is that the small scales concerned by these spectral slopes, in particular in low EKE regions, may significantly affect the larger ones because of the inverse kinetic energy cascade. These results need to be confirmed using a longer numerical integration. They also need to be corroborated by high-resolution observations.

Corresponding author address: Patrice Klein, Laboratoire de Physique des Océans, Plouzané, France. E-mail: pklein@ifremer.fr

Abstract

Following recent studies based on altimetric data, this paper analyses the spectral characteristics of the sea surface height (SSH) using a new realistic simulation of the North Pacific Ocean with high resolution ( in the horizontal and 100 vertical levels). This simulation resolves smaller scales (down to ≈10 km) than altimetric data (limited to 70 km because of the noise level). In high eddy kinetic energy (EKE) regions (as in the western part), SSH spectral slope almost follows a k−4 (with k the wavenumber) or slightly steeper law in agreement with altimeter studies. The new result is that, unlike altimeter studies, such a k−4 slope is also observed in low EKE regions (as in the eastern part). In these regions, this slope mostly concerns scales not well resolved by altimetric data. Such k−4 SSH spectral slopes are weaker from what is expected from quasigeostrophic turbulence theory but closer to surface quasigeostrophic (SQG) turbulence theory. The consequence is that the small scales concerned by these spectral slopes, in particular in low EKE regions, may significantly affect the larger ones because of the inverse kinetic energy cascade. These results need to be confirmed using a longer numerical integration. They also need to be corroborated by high-resolution observations.

Corresponding author address: Patrice Klein, Laboratoire de Physique des Océans, Plouzané, France. E-mail: pklein@ifremer.fr
Save
  • Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187.

    • Search Google Scholar
    • Export Citation
  • Boning, C. W., and R. G. Budich, 1992: Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22, 361381.

    • Search Google Scholar
    • Export Citation
  • Brachet, S., P. Le Traon, and C. Le Provost, 2004: Mesoscale variability from a high-resolution model and from altimeter data in the North Atlantic Ocean. J. Geophys. Res., 109, C12025, doi:10.1029/2004JC002360.

    • Search Google Scholar
    • Export Citation
  • Capet, X., P. Klein, B. Hua, G. Lapeyre, and J. C. McWilliams, 2008a: Surface kinetic and potential energy transfer in SQG dynamics. J. Fluid Mech., 604, 165174.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. Molemaker, and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. Molemaker, and A. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California Current system. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269.

    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., and P. Klein, 2010: Can oceanic submesoscale processes be observed with satellite altimetry? Geophys. Res. Lett., 37, L22602, doi:10.1029/2010GL045057.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. De Szoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear eddies. Prog. Oceanogr., 91, 166216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2. J. Geophys. Res., 105, 19 47719 498.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources and sinks. Annu. Rev. Fluid Mech., 41, 253282.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108.

  • Fu, L.-L., and R. Ferrari, 2008: Observing oceanic submesoscale processes from space. Eos, Trans. Amer. Geophys. Union, 89, 488, doi:10.1029/2008EO480003.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 120.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., and D. B. Haidvogel, 1986: Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci., 43, 29232936.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., and Coauthors, 2011: Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. J. Geophys. Res., 116, C03011, doi:10.1029/2010JC006669.

    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, doi:10.1146/annurev.marine.010908.163704.

    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763.

    • Search Google Scholar
    • Export Citation
  • Klein, P., J. Isern-Fontanet, G. Lapeyre, G. Roullet, E. Danioux, B. Chapron, S. L. Gentil, and H. Sasaki, 2009: Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys. Res. Lett., 36, L12603, doi:10.1029/2009GL038359.

    • Search Google Scholar
    • Export Citation
  • Komori, N., K. Takahashi, K. Komine, T. Motoi, X. Zhang, and G. Sagawa, 2005: Description of sea-ice component of Coupled Ocean–Sea-Ice Model for the Earth Simulator (oifes). J. Earth Simulator, 4, 3145.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2009: What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J. Phys. Oceanogr., 39, 28572874.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P., M. Rouquet, and C. Boissier, 1990: Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data. J. Geophys. Res., 95, 20 26720 285.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P., P. Klein, B. Hua, and G. Dibarboure, 2008: Do altimeter data agree with interior or surface quasi-geostrophic theory? J. Phys. Oceanogr., 38, 11371142.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, A.-M. Tréguier, D. Iovino, G. Madec, S. Masson, and K. Takahashi, 2010: Modifications of gyre circulation by sub-mesoscale physics. Ocean Modell., 34, 115.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., 2010: Sharing the results of a high-resolution ocean general circulation model under a multi-discipline framework—A review of OFES activities. Ocean Dyn., 60, 633652, doi: 10.1007/s10236-010-0297-z.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the World Ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Muller, P., and C. Frankignoul, 1981: Direct atmospheric forcing of geostrophic eddies. J. Phys. Oceanogr., 11, 287308.

  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104 (C7), 15 62115 634.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Qiu, B., R. B. Scott, and S. Chen, 2008: Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 38, 15151527.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, doi:10.1029/2011GL048617.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a β-plane. J. Fluid Mech., 69, 417443.

  • Roullet, G., and P. Klein, 2010: Cyclone-anticyclone asymmetry in geostrophic turbulence. Phys. Rev. Lett., 104, 218501, doi:10.1103/PhysRevLett.104.218501.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., J. C. McWilliams, X. Capet, and M. J. Molemaker, 2012: Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Oceanogr., 42, 1838.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31, 554571.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 17431769.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and C. Wunsch, 1999: Temporal changes in eddy energy of the oceans. Deep-Sea Res. II, 46, 77108.

  • Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Xu, Y., and L. Fu, 2011: Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. J. Phys. Oceanogr., 41, 802809.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 601 123 15
PDF Downloads 513 122 7