The Cascade of Tidal Energy from Low to High Modes on a Continental Slope

Samuel M. Kelly College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Samuel M. Kelly in
Current site
Google Scholar
PubMed
Close
,
Jonathan D. Nash College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Jonathan D. Nash in
Current site
Google Scholar
PubMed
Close
,
Kim I. Martini Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Kim I. Martini in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
, and
Eric Kunze Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Eric Kunze in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from “flat bottom” vertical modes and evaluated with observations from the Oregon continental slope. To better understand the observations, local tidal dynamics are modeled with a superposition of two idealized numerical simulations, one forced by local surface-tide velocities and the other by an obliquely incident internal tide generated at the Mendocino Escarpment 315 km southwest of the study site. The simulations reproduce many aspects of the observed internal tide and verify the modal-energy balances. Observed transfer of tidal energy into high-mode internal tides is quantitatively consistent with observed turbulent kinetic energy (TKE) dissipation. Locally generated and incident simulated internal tides are superposed with varying phase shifts to mimic the effects of the temporally varying mesoscale. Altering the phase of the incident internal tide alters (i) internal-tide energy flux, (ii) internal-tide generation, and (iii) energy conversion to high modes, suggesting that tidally driven TKE dissipation may vary between 0 and 500 watts per meter of coastline on 3–5-day time scales. Comparison of observed in situ internal-tide generation and satellite-derived estimates of surface-tide energy loss is inconclusive.

Current affiliation: University of Western Australia, Crawley, Australia.

Corresponding author address: Samuel M. Kelly, University of Western Australia, M015 SESE, 35 Stirling Hwy., Crawley, WA 6009, Australia. E-mail: samuel.kelly@uwa.edu.au

Abstract

The linear transfer of tidal energy from large to small scales is quantified for small tidal excursion over a near-critical continental slope. A theoretical framework for low-wavenumber energy transfer is derived from “flat bottom” vertical modes and evaluated with observations from the Oregon continental slope. To better understand the observations, local tidal dynamics are modeled with a superposition of two idealized numerical simulations, one forced by local surface-tide velocities and the other by an obliquely incident internal tide generated at the Mendocino Escarpment 315 km southwest of the study site. The simulations reproduce many aspects of the observed internal tide and verify the modal-energy balances. Observed transfer of tidal energy into high-mode internal tides is quantitatively consistent with observed turbulent kinetic energy (TKE) dissipation. Locally generated and incident simulated internal tides are superposed with varying phase shifts to mimic the effects of the temporally varying mesoscale. Altering the phase of the incident internal tide alters (i) internal-tide energy flux, (ii) internal-tide generation, and (iii) energy conversion to high modes, suggesting that tidally driven TKE dissipation may vary between 0 and 500 watts per meter of coastline on 3–5-day time scales. Comparison of observed in situ internal-tide generation and satellite-derived estimates of surface-tide energy loss is inconclusive.

Current affiliation: University of Western Australia, Crawley, Australia.

Corresponding author address: Samuel M. Kelly, University of Western Australia, M015 SESE, 35 Stirling Hwy., Crawley, WA 6009, Australia. E-mail: samuel.kelly@uwa.edu.au
Save
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J. Phys. Oceanogr., 37, 18491858.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, doi:10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Althaus, A. M., E. Kunze, and T. B. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 64, 705722.

  • Buijsman, M. C., J. C. McWilliams, and C. R. Jackson, 2010: East-west asymmetry in nonlinear internal waves from Luzon Strait. J. Geophys. Res., 115, C10057, doi:10.1029/2009JC006004.

    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., and W. Munk, 2006: Tales of the venerable Honolulu tide gauge. J. Phys. Oceanogr., 36, 967996.

  • Desaubies, Y., and M. C. Gregg, 1981: Reversible and irreversible finestructure. J. Phys. Oceanogr., 11, 541556.

  • Echeverri, P., T. Yokossi, N. J. Balmforth, and T. Peacock, 2011: Internal tide attractors between double ridges. J. Fluid Mech., 669, 354374.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., 1997: Tidal data inversion: Interpolation and inference. Prog. Oceanogr., 40, 81108.

  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data. J. Geophys. Res., 106, 22 47522 502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787.

  • Gayen, B., and S. Sarkar, 2010: Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett., 104, 218502, doi:10.1103/PhysRevLett.104.218502.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814.

  • Johnston, T. M. S., M. A. Merrifield, and P. E. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res., 108, 3365, doi:10.1029/2003JC001844.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2010: Tide-topography coupling on a continental slope. Ph.D. thesis, Oregon State University, 117 pp.

  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, doi:10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945.

    • Search Google Scholar
    • Export Citation
  • Koch, A. O., A. L. Kurapov, and J. S. Allen, 2010: Near-surface dynamics of a separated jet in the coastal transition zone off Oregon. J. Geophys. Res., 115, C08020, doi:10.1029/2009JC005704.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A., G. Egbert, J. S. Allen, R. N. Miller, S. Y. Erofeeva, and P. M. Kosro, 2003: The M2 internal tide off Oregon: Inferences from data assimilation. J. Phys. Oceanogr., 33, 17331757.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566.

  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. K. S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1974: On Laplace’s tidal equations. J. Fluid Mech., 66, 241260.

  • Moum, J. N., D. Caldwell, J. D. Nash, and G. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130.

    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010.

  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Osborne, J. J., A. L. Kurapov, G. D. Egbert, and P. M. Kosro, 2011: Spatial and temporal variability of the M2 internal tide generation and propagation on the Oregon shelf. J. Phys. Oceanogr., 41, 20372062.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. 1st ed. Springer, 260 pp.

  • Rainville, L., and R. Pinkel, 2006: Propogation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236.

  • Romsos, C. G., C. Goldfinger, R. Robison, R. L. Milstein, J. D. Chaytor, and W. W. Wakefield, 2007: Development of a regional seafloor surficial geologic habitat map for the continental margins of Oregon and Washington, USA. Marine Geological and Benthic Habitat Mapping, Geological Association of Canada Special Paper 47, 219–243.

  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357.

  • Shimizu, K., 2011: A theory of vertical modes in multilayer stratified fluids. J. Phys. Oceanogr., 41, 16491707.

  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 2882–2899.

  • van Haren, H., 2004: Incoherent internal tidal currents in the deep ocean. Ocean Dyn., 54, 6676.

  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys. Space Phys., 13, 167182.

  • Zhao, Z., and M. H. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., M. A. Merrifield, G. S. Carter, D. S. Luther, M. D. Levine, and T. J. Boyd, 2011: Incoherent nature of M2 internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 20212036.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2000 1395 359
PDF Downloads 740 127 15