• Bacon, S., 1998: Decadal variability in the outflow from the Nordic Seas to the deep Atlantic Ocean. Nature, 394, 871874.

  • Boessenkool, K. P., , I. R. Hall, , H. Elderfield & , and I. Yashayaev 2007: North Atlantic climate and deep-ocean flow speed changes during the last 230 years. Geophys. Res. Lett., 34, L13614, doi:10.1029/2007GL030285.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance. Science, 278, 15821588, doi:10.1126/science.278.5343.1582.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , H. R. Longworth, , and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, doi:10.1038/nature04385.

    • Search Google Scholar
    • Export Citation
  • Dengler, M., , J. Fischer, , F. A. Schott, , and R. Zantropp, 2006: Deep Labrador Current and its variability in 1996–2005. Geophys. Res. Lett., 33, L21S06, doi:10.1029/2006GL026702.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., , I. Yashayaev, , J. Meincke, , B. Turrell, , S. Dye, , and J. Holfort, 2002: Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416, 832837.

    • Search Google Scholar
    • Export Citation
  • Drange, H., and Coauthors, 2005: The Nordic Seas: An overview. The Nordic Seas: An Integrated Perspective, Geophys. Monogr., Vol. 158, Amer. Geophys. Union, 1–10.

  • Eldevik, T., , J. Nilsen, , D. Iovino, , K. Olsson, , A. Sando, , and H. Drange, 2009: Observed sources and variability of Nordic Seas overflow. Nat. Geosci., 2, 406410.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., , F. A. Schott, , and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34, 15481570.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., , M. Visbeck, , R. Zantopp & , and N. Nunes 2010: Interannual to decadal variability of outflow from the Labrador Sea. Geophys. Res. Lett., 37, L24610, doi:10.1029/2010GL045321.

    • Search Google Scholar
    • Export Citation
  • Gregory, D. N., 2004: Climate: A database of temperature and salinity observations for the northwest Atlantic. Canadian Science Advisory Secretariat Research Document 2004/75, 10 pp.

  • Han, G., , K. Ohashi, , N. Chen, , P. G. Myers, , N. Nunes, , and J. Fischer, 2010: Decline and partial rebound of the Labrador Current 1993–2004: Monitoring ocean currents from altimetric and conductivity-temperature-depth data. J. Geophys. Res., 115, C12012, doi:10.1029/2009JC006091.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., , W. Turrell, , and S. Osterhus, 2001: Decreasing overflow from the Nordic Seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature, 411, 927930.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., , and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., 37, 743763.

    • Search Google Scholar
    • Export Citation
  • Holliday, N., , S. Bacon, , J. Allen, , and E. McDonagh, 2009: Circulation and transport in the western boundary currents at Cape Farewell, Greenland. J. Phys. Oceanogr., 39, 18541870.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., and Coauthors, 2010: Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J. Climate, 23, 56785698.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., , and M. Rhein, 2006: Variability of the overflow water transport in the western subpolar North Atlantic, 1950–97. J. Phys. Oceanogr., 36, 435456.

    • Search Google Scholar
    • Export Citation
  • Kulan, N., , and P. G. Myers, 2009: Comparing two climatologies of the Labrador Sea: Geopotential and isopycnal. Atmos.—Ocean, 47, 1939, doi:10.3137/OC281.2009.

    • Search Google Scholar
    • Export Citation
  • Lazier, J., , R. Hendry, , A. Clarke, , I. Yashayaev, , and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res., 49, 18191835.

    • Search Google Scholar
    • Export Citation
  • Macrander, A., , R. Kase, , U. Send, , H. Valdimarsson, , and S. Jonsson, 2007: Spatial and temporal structure of the Denmark Strait Overflow revealed by acoustic observations. Ocean Dyn., 57, 7589.

    • Search Google Scholar
    • Export Citation
  • Myers, P. G., 2002: SPOM: A regional model of the sub-polar North Atlantic. Atmos.–Ocean, 40, 445463.

  • Myers, P. G., , and C. Donnelly, 2008: Water mass transformation and formation in the Labrador Sea. J. Climate, 21, 16221638.

  • Myers, P. G., , C. Donnelly, , and M. H. Ribergaard, 2009: Structure and variability of the West Greenland Current in summer derived from 6 repeat standard sections. Prog. Oceanogr., 80, 93112, doi:10.1016/j.pocean.2008.12.003.

    • Search Google Scholar
    • Export Citation
  • Osterhus, S., , W. Turrell, , B. Hansen, , P. Lundberg, , and E. Buch, 2001: Observed transport estimates between the North Atlantic and the Arctic Mediterranean in the Iceland-Scotland region. Polar Res., 20, 169175.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11, 131149.

  • Sarafanov, A., , A. Falina, , H. Mercier, , P. Lherminier & , and A. Sokov 2009: Recent changes in the Greenland-Scotland overflow-derived water transport from hydrographic observations in the southern Irminger Sea. Geophys. Res. Lett., 36, L13606, doi:10.1029/2009GL038385.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Spence, J. P., , M. Eby, , and A. J. Weaver, 2008: The sensitivity of the Atlantic meridional overturning circulation to freshwater forcing at eddy-permitting resolutions. J. Climate, 21, 26972710.

    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., , D. G. Wright, , Y. Lu, , and E. Demirov, 2006: A simple method for reducing seasonal bias and drift in eddy resolving ocean models. Ocean Modell., 14, 122138.

    • Search Google Scholar
    • Export Citation
  • Wu, P., , R. Wood, , P. Stott, , and G. S. Jones, 2007: Deep North Atlantic freshening simulated in a coupled model. Prog. Oceanogr., 73, 370383.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., , and J. W. Loder, 2009: Enhanced production of Labrador Sea Water in 2008. Geophys. Res. Lett., 36, L01606, doi:10.1029/2008GL036162.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., , M. Bersch & , and H. M. van Aken 2007: Spreading of the Labrador Sea Water to the Irminger and Iceland basins. Geophys. Res. Lett., 34, L10602, doi:10.1029/2006GL028999.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 5
PDF Downloads 9 9 2

Changes in the Deep Western Boundary Current at 53°N

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
  • | 2 ASL Environmental Sciences, Victoria, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

Southward transports in the deep western boundary current across 53°N, over 1949–99, are determined from a historical reconstruction. Long-term mean transports, for given water masses, for net southward transport (the southward component of the transport not including recirculation given in parentheses) are 4.7 ± 2.3 Sv (5.1 ± 2.4 Sv) (Sv ≡ 106 m3 s−1) for the Denmark Strait Overflow Water, 6.1 ± 2.7 Sv (6.8 ± 1.7 Sv) for the Iceland–Scotland Overflow Water, 6.5 ± 2.6 Sv (7.1 ± 1.8 Sv) for classical Labrador Sea Water, and 2.3 ± 1.9 Sv (2.7 ± 3.4 Sv) for upper Labrador Sea Water. The estimates take into account seasonal and interannual variability of the isopycnal positions and suggest the importance of including this factor. A strong correlation, 0.91, is found between variability of the total and baroclinic transports (with the barotropic velocity removed) at the annual time scale. This correlation drops to 0.32 if the baroclinic transports are, instead, computed based upon the use of a fixed level of no motion at 1400 m. The Labrador Sea Water layer shows significant variability and enhanced transport during the 1990s but no trend. The deeper layers do show a declining (but nonstatistically significant) trend over the period analyzed, largest in the ISOW layer. The Iceland–Scotland Overflow Water presents a 0.029 Sv yr−1 decline or 1.5 Sv over the 50-yr period, an 18%–22% decrease in its mean transport.

Corresponding author address: Paul G. Myers, Department Earth and Atmospheric Sciences, University of Alberta, Edmonton AB, Canada.E-mail: pmyers@ualberta.ca

Abstract

Southward transports in the deep western boundary current across 53°N, over 1949–99, are determined from a historical reconstruction. Long-term mean transports, for given water masses, for net southward transport (the southward component of the transport not including recirculation given in parentheses) are 4.7 ± 2.3 Sv (5.1 ± 2.4 Sv) (Sv ≡ 106 m3 s−1) for the Denmark Strait Overflow Water, 6.1 ± 2.7 Sv (6.8 ± 1.7 Sv) for the Iceland–Scotland Overflow Water, 6.5 ± 2.6 Sv (7.1 ± 1.8 Sv) for classical Labrador Sea Water, and 2.3 ± 1.9 Sv (2.7 ± 3.4 Sv) for upper Labrador Sea Water. The estimates take into account seasonal and interannual variability of the isopycnal positions and suggest the importance of including this factor. A strong correlation, 0.91, is found between variability of the total and baroclinic transports (with the barotropic velocity removed) at the annual time scale. This correlation drops to 0.32 if the baroclinic transports are, instead, computed based upon the use of a fixed level of no motion at 1400 m. The Labrador Sea Water layer shows significant variability and enhanced transport during the 1990s but no trend. The deeper layers do show a declining (but nonstatistically significant) trend over the period analyzed, largest in the ISOW layer. The Iceland–Scotland Overflow Water presents a 0.029 Sv yr−1 decline or 1.5 Sv over the 50-yr period, an 18%–22% decrease in its mean transport.

Corresponding author address: Paul G. Myers, Department Earth and Atmospheric Sciences, University of Alberta, Edmonton AB, Canada.E-mail: pmyers@ualberta.ca
Save