The World Ocean Thermohaline Circulation

Kristofer Döös Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Kristofer Döös in
Current site
Google Scholar
PubMed
Close
,
Johan Nilsson Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Johan Nilsson in
Current site
Google Scholar
PubMed
Close
,
Jonas Nycander Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Jonas Nycander in
Current site
Google Scholar
PubMed
Close
,
Laurent Brodeau Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Laurent Brodeau in
Current site
Google Scholar
PubMed
Close
, and
Maxime Ballarotta Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Maxime Ballarotta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new global streamfunction is presented and denoted the thermohaline streamfunction. This is defined as the volume transport in terms of temperature and salinity (hence no spatial variables). The streamfunction is used to analyze and quantify the entire World Ocean conversion rate between cold/warm and fresh/saline waters. It captures two main cells of the global thermohaline circulation, one corresponding to the conveyor belt and one corresponding to the shallow tropical circulation. The definition of a thermohaline streamfunction also enables a new method of estimating the turnover time as well as the heat and freshwater transports of the conveyor belt. The overturning time of the conveyor belt is estimated to be between 1000 and 2000 yr, depending on the choice of stream layer. The heat and freshwater transports of these two large thermohaline cells have been calculated by integrating the thermohaline streamfunction over the salinity or temperature, yielding a maximum heat transport of the conveyor belt of 1.2 PW over the 34.2-PSU salinity surface and a freshwater transport of 0.8 Sv (1 Sv ≡ 106 m3 s−1) over the 9°C isotherm. This is a measure of the net interocean exchange of heat between the Atlantic and Indo-Pacific due to the thermohaline circulation.

Supplemental information related to this paper is available at the Journals Online website.

Corresponding author address: Kristofer Döös, Department of Meteorology, Stockholm University, SE-10691 Stockholm, Sweden. E-mail: doos@misu.su.se

Abstract

A new global streamfunction is presented and denoted the thermohaline streamfunction. This is defined as the volume transport in terms of temperature and salinity (hence no spatial variables). The streamfunction is used to analyze and quantify the entire World Ocean conversion rate between cold/warm and fresh/saline waters. It captures two main cells of the global thermohaline circulation, one corresponding to the conveyor belt and one corresponding to the shallow tropical circulation. The definition of a thermohaline streamfunction also enables a new method of estimating the turnover time as well as the heat and freshwater transports of the conveyor belt. The overturning time of the conveyor belt is estimated to be between 1000 and 2000 yr, depending on the choice of stream layer. The heat and freshwater transports of these two large thermohaline cells have been calculated by integrating the thermohaline streamfunction over the salinity or temperature, yielding a maximum heat transport of the conveyor belt of 1.2 PW over the 34.2-PSU salinity surface and a freshwater transport of 0.8 Sv (1 Sv ≡ 106 m3 s−1) over the 9°C isotherm. This is a measure of the net interocean exchange of heat between the Atlantic and Indo-Pacific due to the thermohaline circulation.

Supplemental information related to this paper is available at the Journals Online website.

Corresponding author address: Kristofer Döös, Department of Meteorology, Stockholm University, SE-10691 Stockholm, Sweden. E-mail: doos@misu.su.se

Supplementary Materials

    • Supplemental Materials (ZIP 72.33 MB)
Save
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

  • Blanke, B., M. Arhan, and S. Speich, 2006: Salinity changes along the upper limb of the Atlantic thermohaline circulation. Geophys. Res. Lett., 33, L06609, doi:10.1029/2007JC004351.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A.-M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1987: The biggest chill. Natural History, No. 97, 74–82.

  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989.

  • de Vries, P., and K. Döös, 2001: Calculating Lagrangian trajectories using time-dependent velocity fields. J. Atmos. Oceanic Technol., 18, 10921101.

    • Search Google Scholar
    • Export Citation
  • Döös, K., 1995: Inter-ocean exchange of water masses. J. Geophys. Res., 100 (C7), 13 49913 514.

  • Döös, K., 1996: The meridional circulation in the southern ocean and its seasonal variability. J. Geophys. Res., 101 (C3), 63936407.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The deacon cell and the other meridional cells in the Southern Ocean. J. Phys. Oceanogr., 24, 429442.

    • Search Google Scholar
    • Export Citation
  • Döös, K., J. Nycander, and A. C. Coward, 2008: Lagrangian decomposition of the Deacon Cell. J. Geophys. Res., 113, C07028, doi:10.1029/2007JC004351.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1992: On the formation of Antarctic Intermediate and Bottom Water in ocean general circulation models. J. Phys. Oceanogr., 22, 918926.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: The age of water and ventilation time scales in a global ocean model. J. Phys. Oceanogr., 25, 27562777.

  • Fichefet, T., and M. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 609646.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: The age of water and ventilation time-scales in a global ocean model. J. Geophys. Res., 91, 50375046.

  • Gregg, M. C., H. Peters, J. C. Wesson, N. S. Oakey, and T. J. Shay, 1985: Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature, 318, 140144.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, doi:10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, L. C. Allison, J. M. Gregory, T. J. Woollings, H. Pohlmann, and B. de Cuevas, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, doi:10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., P. Berrisford, B. Hoskins, A. Simmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 atlas. ECMWF Tech. Rep., 191 pp.

  • Kawase, M., and J. L. Sarmiento, 1985: Nutrients in the Atlantic thermocline. J. Geophys. Res., 90, 28 96128 979.

  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models. NCAR Tech. Note, 22 pp.

  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Madec, G., 2008: NEMO ocean engine. Institut Pierre-Simon Laplace Note du Pole de Modélisation, 300 pp.

  • Marsh, R., G. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr., 30, 10131045.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466496.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., and H. Körnich, 2008: A conceptual model of the surface salinity distribution in the oceanic Hadley cell. J. Climate, 21, 65866598.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., G. Broström, J. Nilsson, and K. Döös, 2007: Thermodynamic analysis of the ocean circulation. J. Phys. Oceanogr., 37, 20382052.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer Verlag, 453 pp.

  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811, doi:10.1007/s003820050144.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96, 26752692.

  • Speer, K. G., 1993: Conversion among North Atlantic surface water types. Tellus, 45A, 7279.

  • Speich, S., B. Blanke, P. de Vries, K. Döös, S. Drijfhout, A. Ganachaud, and R. Marsh, 2002: Tasman leakage: A new route in the global ocean conveyor belt. Geophys. Res. Lett., 29, 16231642.

    • Search Google Scholar
    • Export Citation
  • Stevens, I. G., and D. Stevens, 1999: South Atlantic interbasin exchange. Ann. Geophys., 17, 971982.

  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Uppala, S., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18.

  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195.

  • Wijffels, S. E., R. W. Schmitt, H. L. Bryden, and A. Stigebrandt, 1992: Transport of freshwater by the oceans. J. Phys. Oceanogr., 22, 155162.

    • Search Google Scholar
    • Export Citation
  • Worthington, L., 1981: The water masses of the world ocean: Some results of a fine-scale census. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 42–69.

  • Wyrtki, K., and B. Kilonsky, 1984: Mean water and current structure during the Hawaii-to-Tahiti Shuttle Experiment. J. Phys. Oceanogr., 14, 242254.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., M. H. England, and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5048 2354 595
PDF Downloads 2957 660 135