Estimating Suppression of Eddy Mixing by Mean Flows

Andreas Klocker Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Andreas Klocker in
Current site
Google Scholar
PubMed
Close
,
Raffaele Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
, and
Joseph H. LaCasce Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Joseph H. LaCasce in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Particle- and tracer-based estimates of lateral diffusivities are used to estimate the suppression of eddy mixing across strong currents. Particles and tracers are advected using a velocity field derived from sea surface height measurements from the South Pacific, in a region west of Drake Passage. This velocity field has been used in a companion paper to show that both particle- and tracer-based estimates of eddy diffusivities are equivalent, despite recent claims to the contrary. These estimates of eddy diffusivities are here analyzed to show 1) that the degree of suppression of mixing across the strong Antarctic Circumpolar Current is correctly predicted by mixing length theory modified to include eddy propagation along the mean flow and 2) that the suppression can be inferred from particle trajectories by studying the structure of the autocorrelation function of the particle velocities beyond the first zero crossing. These results are then used to discuss how to compute lateral and vertical variations in eddy diffusivities using floats and drifters in the real ocean.

Current affiliation: Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.

Corresponding author address: Andreas Klocker, Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. E-mail: andreas.klocker@anu.edu.au

Abstract

Particle- and tracer-based estimates of lateral diffusivities are used to estimate the suppression of eddy mixing across strong currents. Particles and tracers are advected using a velocity field derived from sea surface height measurements from the South Pacific, in a region west of Drake Passage. This velocity field has been used in a companion paper to show that both particle- and tracer-based estimates of eddy diffusivities are equivalent, despite recent claims to the contrary. These estimates of eddy diffusivities are here analyzed to show 1) that the degree of suppression of mixing across the strong Antarctic Circumpolar Current is correctly predicted by mixing length theory modified to include eddy propagation along the mean flow and 2) that the suppression can be inferred from particle trajectories by studying the structure of the autocorrelation function of the particle velocities beyond the first zero crossing. These results are then used to discuss how to compute lateral and vertical variations in eddy diffusivities using floats and drifters in the real ocean.

Current affiliation: Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.

Corresponding author address: Andreas Klocker, Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia. E-mail: andreas.klocker@anu.edu.au
Save
  • Abernathey, R., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Critical layer enhancement of mesoscale eddy stirring in the Southern Ocean. J. Phys. Oceanogr., 40, 170–184.

    • Search Google Scholar
    • Export Citation
  • Allen, D. R., and N. Nakamura, 2001: A seasonal climatology of effective diffusivity in the stratosphere. J. Geophys. Res., 106, 7917–7935.

    • Search Google Scholar
    • Export Citation
  • Bender, C. M., and S. A. Orszag, 1978: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, 593 pp.

  • Bower, A. S., H. T. Rossby, and J. L. Lillibridge, 1985: The Gulf Stream—Barrier or blender? J. Phys. Oceanogr., 15, 24–32.

    • Search Google Scholar
    • Export Citation
  • Brink, K., R. Beardsley, P. Niiler, M. Abbott, A. Huyer, S. Ramp, T. Stanton, and D. Stuart, 1991: Statistical properties of near surface currents in the California coastal transition zone. J. Geophys. Res., 96, 14 693–14 706.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdiere, A., 1983: Lagrangian eddy statistics from surface drifters in the eastern North Atlantic. J. Mar. Res., 41, 375–398.

    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1974: Limitations of gradient transport models in random walks and in turbulence. Advances in Geophysics, Vol. 18A, Academic Press, 25–60.

    • Search Google Scholar
    • Export Citation
  • Davis, R., 1991: Observing the general circulation with floats. Deep-Sea Res., 38A, S531–S571.

  • DelSole, T., 2004: Stochastic models of quasigeostrophic turbulence. Surv. Geophys., 25, 107–149.

  • Farrell, R., and P. J. Ioannou, 1993: Stochastic dynamics of baroclinic waves. J. Atmos. Sci., 50, 4044–4057.

  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 1501–1519.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., and D. J. McGillicuddy, 2002: Mesoscale and sub-mesoscale physical-biological interactions. The Sea: Ideas and Observations on Progress in the Study of the Seas, A. R. Robinson, J. J. McCarthy, and B. Rothschild, Eds., Biological-Physical Interactions in the Sea, Vol. 12, John Wiley & Sons, 113–185.

  • Freeland, H., P. Rhines, and T. Rossby, 1975: Statistical observations of the trajectories of neutrally buoyant floats in the North Atlantic. J. Mar. Res., 33, 383–404.

    • Search Google Scholar
    • Export Citation
  • Garraffo, Z., A. Mariano, A. Griffa, and C. Veneziani, 2001: Lagrangian data in a high-resolution numerical simulation of the North Atlantic. I. Comparison with in-situ drifter data. J. Mar. Syst., 29, 157–176.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157–185.

    • Search Google Scholar
    • Export Citation
  • Griesel, A., S. T. Gille, J. Sprintall, L. Mc, J. Clean, H. La, J. Casce, and M. E. Maltrud, 2010: Isopycnal diffusivities in the Antarctic Circumpolar Current inferred from Lagrangian floats in an eddying model. J. Mar. Res., 66, 441–463.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and E. Shuckburgh, 2000a: Effective diffusivity as a diagnostic of atmospheric transport 1: Stratosphere. J. Geophys. Res., 105, 22 777–22 794.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and E. Shuckburgh, 2000b: Effective diffusivity as a diagnostic of atmospheric transport 2: Troposphere and lower stratosphere. J. Geophys. Res., 105, 22 795–22 810.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1986: Estimation of oceanic eddy transports from satellite altimetry. Nature, 323, 243–244.

  • Holloway, G., and S. S. Kristmannsson, 1986: Stirring and transport of tracer fields by geostrophic turbulence. J. Fluid Mech., 141, 27–50.

    • Search Google Scholar
    • Export Citation
  • Keffer, T., and G. Holloway, 1988: Estimating Southern Ocean eddy flux of heat and salt from satellite altimetry. Nature, 332, 624–626.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer. Part I: Theory. J. Mar. Res., 55, 1171–1197.

  • Killworth, P. D., and C. W. Hughes, 2002: The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res., 60, 19–45.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, J. H. LaCasce, and S. T. Merrifield, 2012: Reconciling float-based and tracer-based estimates of eddy diffusivities. J. Mar. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Koszalka, I., J. H. LaCasce, M. Andersson, K. A. Orvik, and C. Mauritzen, 2011: Surface circulation in the Nordic Seas from clustered drifters. Deep-Sea Res. I, 58, 468–485.

    • Search Google Scholar
    • Export Citation
  • Krauss, W., and C. W. Böning, 1987: Lagrangian properties of eddy fields in the northern North Atlantic as deduced from satellite-tracked buoys. J. Mar. Res., 45, 259–291.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and P. Flament, 2001: Lagrangian statistics in the central North Pacific. J. Mar. Syst., 29, 141–155.

  • Lumpkin, R., A.-M. Treguier, and K. Speer, 2002: Lagrangian eddy scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32, 2425–2440.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 1806–1821.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880–899.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in area coordinates. J. Atmos. Sci., 53, 1524–1537.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and J. Ma, 1997: Modified Lagrangian-mean diagnostics of the stratospheric polar vortices 2. Nitrous oxide and seasonal barrier migration in the cryogenic limb array etalon spectrometer and SKYHI general circulation model. J. Geophys. Res., 102, 25 721–25 735.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Ottino, J. M., 1989: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, 364 pp.

  • Ottino, J. M., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Papanicolaou, G., and O. Pironneau, 1981: On the asymptotic behavior of motion in random flows. Stochastic Nonlinear Systems, L. Arnold and R. Lefever, Eds., Springer, 36–41.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Poulain, P.-M., and P. P. Niiler, 1989: Statistical analysis of the surface circulation in the California current system using satellite-tracked drifters. J. Phys. Oceanogr., 19, 1588–1603.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech., 5, 136–139.

  • Rose, H. A., 1977: Eddy diffusivity, eddy noise, and subgridscale modelling. J. Fluid Mech., 81, 719–734.

  • Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441–463.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and S. R. Rintoul, 2011: Mean-flow and topographic control on surface eddy-mixing in the Southern Ocean. J. Mar. Res., 69, 753–777.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., and P. Haynes, 2003: Diagnosing transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15, 471, doi:10.1063/1.1610.

    • Search Google Scholar
    • Export Citation
  • Speer, K., J. Gould, and J. LaCasce, 1999: Year-long float trajectories in the Labrador Sea Water of the eastern North Atlantic Ocean. Deep-Sea Res. II, 46, 165–179.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196–211.

  • Toole, J. M., and T. J. McDougall, 2001: Mixing and stirring in the ocean interior. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 337–356.

  • Tulloch, R., J. Marshall, and K. S. Smith, 2009: Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence. J. Geophys. Res., 114, C02005, doi:10.1029/2008JC005055.

    • Search Google Scholar
    • Export Citation
  • Veneziani, M., A. Griffa, A. M. Reynolds, and A. J. Mariano, 2004: Oceanic turbulence and stochastic models from subsurface Lagrangian data for the northwest Atlantic Ocean. J. Phys. Oceanogr., 34, 1884–1906.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2010: Toward a midlatitude ocean frequency–wavenumber spectral density and trend determination. J. Phys. Oceanogr., 40, 2264–2281.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 384 138 10
PDF Downloads 305 122 6