Intermediate Zonal Jets in the Tropical Pacific Ocean Observed by Argo Floats

Sophie Cravatte LEGOS, Université de Toulouse (OMP-PCA)/IRD/CNRS/CNES, and Institut de Recherche pour le Développement, LEGOS, Toulouse, France

Search for other papers by Sophie Cravatte in
Current site
Google Scholar
PubMed
Close
,
William S. Kessler National Oceanic and Atmospheric Administration/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by William S. Kessler in
Current site
Google Scholar
PubMed
Close
, and
Frédéric Marin LEGOS, Université de Toulouse (OMP-PCA)/IRD/CNRS/CNES, Toulouse, France, and Institut de Recherche pour le Développement, LEGOS, Nouméa, New Caledonia

Search for other papers by Frédéric Marin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Argo float data in the tropical Pacific Ocean during January 2003–August 2011 are analyzed to obtain Lagrangian subsurface velocities at their parking depths. Maps of mean zonal velocities at 1000 and 1500 m are presented. At both depths, a series of alternating westward and eastward zonal jets with a meridional scale of 1.5° is seen at the basin scale from 10°S to 10°N. These alternating jets, with mean speeds about 5 cm s−1, are clearly present in the western and central parts of the basin but weaken and disappear approaching the eastern coast. They are stronger in the Southern Hemisphere. Along the equator at both 1000 and 1500 m, a westward jet is seen. The jets closer to the equator are remarkably zonally coherent across the basin, but the jets farther poleward appear broken in several segments. In the western half of the basin, the 1000-m zonal jets appear to slant slightly poleward from east to west. At the western boundary in the south (east of Solomon Islands and Papua New Guinea), the alternating jets appear to connect in narrow boundary currents. Seasonal zonal velocity anomalies at 1000 and 1500 m are observed to propagate westward across the basin; they are consistent with annual vertically propagating Rossby waves superimposed on the mean zonal jets. Their meridional structure suggests that more than one meridional mode is present.

Corresponding author address: Sophie Cravatte, IRD, LEGOS, 14 avenue Edouard Belin, Toulouse 31400, France. E-mail: sophie.cravatte@ird.fr

Pacific Marine Environmental Laboratory Contribution Number 3777.

Abstract

Argo float data in the tropical Pacific Ocean during January 2003–August 2011 are analyzed to obtain Lagrangian subsurface velocities at their parking depths. Maps of mean zonal velocities at 1000 and 1500 m are presented. At both depths, a series of alternating westward and eastward zonal jets with a meridional scale of 1.5° is seen at the basin scale from 10°S to 10°N. These alternating jets, with mean speeds about 5 cm s−1, are clearly present in the western and central parts of the basin but weaken and disappear approaching the eastern coast. They are stronger in the Southern Hemisphere. Along the equator at both 1000 and 1500 m, a westward jet is seen. The jets closer to the equator are remarkably zonally coherent across the basin, but the jets farther poleward appear broken in several segments. In the western half of the basin, the 1000-m zonal jets appear to slant slightly poleward from east to west. At the western boundary in the south (east of Solomon Islands and Papua New Guinea), the alternating jets appear to connect in narrow boundary currents. Seasonal zonal velocity anomalies at 1000 and 1500 m are observed to propagate westward across the basin; they are consistent with annual vertically propagating Rossby waves superimposed on the mean zonal jets. Their meridional structure suggests that more than one meridional mode is present.

Corresponding author address: Sophie Cravatte, IRD, LEGOS, 14 avenue Edouard Belin, Toulouse 31400, France. E-mail: sophie.cravatte@ird.fr

Pacific Marine Environmental Laboratory Contribution Number 3777.

Save
  • Ascani, F., E. Firing, P. Dutrieux, J. P. McCreary, and A. Ishida, 2010: Deep equatorial ocean circulation induced by a forced–dissipated Yanai beam. J. Phys. Oceanogr., 40, 11181142.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1976: Fourier Decomposition of Time Series: An Introduction. John Wiley, 258 pp.

  • Condie, S. A., and J. R. Dunn, 2006: Seasonal characteristics of the surface mixed layer in the Australasian region: Implications for primary production regimes and biogeography. Mar. Freshwater Res., 57, 569590.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1998: Preliminary results from directly measuring middepth circulation in the tropical and South Pacific. J. Geophys. Res., 103 (C10), 24 61924 639.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 2005: Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35, 683707.

    • Search Google Scholar
    • Export Citation
  • De Mey, P., and Y. Menard, 1989: Synoptic analysis and dynamical adjustment of GEOS-3 and Seasat altimeter eddy fields in the northwest Atlantic. J. Geophys. Res., 94 (C5), 62216231.

    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., B. L. Hua, and H. Sasaki, 2007: Equatorial deep jets triggered by a large vertical scale variability within the western boundary layer. J. Mar. Res., 65, 125.

    • Search Google Scholar
    • Export Citation
  • Firing, E., 1987: Deep zonal currents in the central equatorial Pacific. J. Mar. Res., 45, 791812.

  • Firing, E., S. E. Wijffels, and P. Hacker, 1998: Equatorial subthermocline currents across the Pacific. J. Geophys. Res., 103 (C10), 21 41321 423.

    • Search Google Scholar
    • Export Citation
  • Firing, E., Y. Kashino, and P. Hacker, 2005: Energetic subthermocline currents observed east of Mindanao. Deep-Sea Res. I, 52 (3–4), 605613.

    • Search Google Scholar
    • Export Citation
  • Gouriou, Y., T. Delcroix, and G. Eldin, 2006: Upper and intermediate circulation in the western equatorial Pacific Ocean in October 1999 and April 2000. Geophys. Res. Lett., 33, L10603, doi:10.1029/2006GL025941.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., M. d’Orgeville, M. D. Fruman, C. Menesguen, R. Schopp, P. Klein, and H. Sasaki, 2008: Destabilization of mixed Rossby gravity waves and the formation of equatorial zonal jets. J. Fluid Mech., 610, 311341.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., E. Kunze, K. E. McTaggart, and D. W. Moore, 2002: Temporal and spatial structure of the equatorial deep jets in the Pacific Ocean. J. Phys. Oceanogr., 32, 33963407.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and J. P. McCreary, 1993: The annual wind-driven Rossby wave in the subthermocline equatorial Pacific. J. Phys. Oceanogr., 23, 11921207.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100 (C6), 10 61310 631.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Firing, 1985: The annual Rossby wave in the central equatorial Pacific Ocean. J. Phys. Oceanogr., 15, 5567.

  • Marin, F., E. Kestenare, T. Delcroix, F. Durand, S. Cravatte, G. Eldin, and R. Bourdalle-Badie, 2010: Annual reversal of the equatorial intermediate current in the Pacific: Observations and model diagnostics. J. Phys. Oceanogr., 40, 915933.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • Melnichenko, O. V., N. A. Maximenko, N. Schneider, and H. Sasaki, 2010: Quasi-stationary striations in basin-scale oceanic circulation: Vorticity balance from observations and eddy-resolving model. Ocean Dyn., 60, 653666.

    • Search Google Scholar
    • Export Citation
  • Menesguen, C., B. L. Hua, M. D. Fruman, and R. Schopp, 2009: Dynamics of the combined extra-equatorial and equatorial deep jets in the Atlantic. J. Mar. Res., 67, 323346.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and H. Hasumi, 2005: A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35, 474488.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson, and W. Zenk, 2006: Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett., 33, L05605, doi:10.1029/2005GL025368.

    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, B. A. King, and S. C. Riser, 2005: An advanced method to estimate deep currents from profiling floats. J. Atmos. Oceanic Technol., 22, 12941304.

    • Search Google Scholar
    • Export Citation
  • Perez, R. C., D. B. Chelton, and R. N. Miller, 2005: The effects of wind forcing and background mean currents on the latitudinal structure of equatorial Rossby waves. J. Phys. Oceanogr., 35, 666682.

    • Search Google Scholar
    • Export Citation
  • Richards, K. J., N. A. Maximenko, F. O. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, L03605, doi:10.1029/2005GL024645.

    • Search Google Scholar
    • Export Citation
  • Rowe, G. D., E. Firing, and G. C. Johnson, 2000: Pacific equatorial subsurface countercurrent velocity, transport, and potential vorticity. J. Phys. Oceanogr., 30, 11721187.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., G. Siedler, A. Ishida, E. Holfort, Y. Kashino, Y. Kuroda, T. Miyama, and T. J. Muller, 2005: Pathways and variability of the Antarctic Intermediate Water in the western equatorial Pacific Ocean. Prog. Oceanogr., 67 (1–2), 245281.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 782 232 87
PDF Downloads 767 225 74