Abstract
Argo float data in the tropical Pacific Ocean during January 2003–August 2011 are analyzed to obtain Lagrangian subsurface velocities at their parking depths. Maps of mean zonal velocities at 1000 and 1500 m are presented. At both depths, a series of alternating westward and eastward zonal jets with a meridional scale of 1.5° is seen at the basin scale from 10°S to 10°N. These alternating jets, with mean speeds about 5 cm s−1, are clearly present in the western and central parts of the basin but weaken and disappear approaching the eastern coast. They are stronger in the Southern Hemisphere. Along the equator at both 1000 and 1500 m, a westward jet is seen. The jets closer to the equator are remarkably zonally coherent across the basin, but the jets farther poleward appear broken in several segments. In the western half of the basin, the 1000-m zonal jets appear to slant slightly poleward from east to west. At the western boundary in the south (east of Solomon Islands and Papua New Guinea), the alternating jets appear to connect in narrow boundary currents. Seasonal zonal velocity anomalies at 1000 and 1500 m are observed to propagate westward across the basin; they are consistent with annual vertically propagating Rossby waves superimposed on the mean zonal jets. Their meridional structure suggests that more than one meridional mode is present.
Pacific Marine Environmental Laboratory Contribution Number 3777.