Standing Eddies in the Meridional Overturning Circulation

Jan Viebahn KlimaCampus, University of Hamburg, Hamburg, Germany

Search for other papers by Jan Viebahn in
Current site
Google Scholar
PubMed
Close
and
Carsten Eden KlimaCampus, University of Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of standing eddies for the meridional overturning circulation (MOC) is discussed. The time-mean isopycnal meridional streamfunction is decomposed into a time- and zonal-mean part, a standing-eddy part, and a transient-eddy part. It turns out that the construction of an isopycnal MOC with an exactly vanishing standing-eddy part has to be performed by zonal integration along depth-dependent horizontal isolines of time-mean density. In contrast, zonal integration along time-mean geostrophic streamlines generally only leads to an isopycnal MOC with a reduced standing-eddy part. A generalized approach of constructing meridional transport streamfunctions by two tracer fields and the generalized way to neutralize the corresponding standing-eddy part is given to summarize the discussion.

Using the results of an idealized Southern Ocean model, it is demonstrated that neglecting the depth dependence of the zonal integration paths by integrating along density contours or geostrophic streamlines of a fixed depth (“contour depth”) may represent an acceptable approximation: although the standing-eddy part then exactly vanishes only at the contour depth (except for the ageostrophic surface layer using geostrophic streamlines), the overall standing-eddy part is significantly reduced for adequate contour depths. In the idealized Southern Ocean model, density contours at middepth and surface geostrophic streamlines represent the most adequate approximations. Moreover, it is found that the effect of changing the zonal integration paths from latitude circles to curvilinear paths on the zonally averaged density is of the same order as changing from Eulerian to isopycnal averaging.

Corresponding author address: Jan Viebahn, KlimaCampus, Institute of Oceanography, University of Hamburg, Bundesstraße 53, 20146 Hamburg, Germany. E-mail: jan.viebahn@zmaw.de

Abstract

The role of standing eddies for the meridional overturning circulation (MOC) is discussed. The time-mean isopycnal meridional streamfunction is decomposed into a time- and zonal-mean part, a standing-eddy part, and a transient-eddy part. It turns out that the construction of an isopycnal MOC with an exactly vanishing standing-eddy part has to be performed by zonal integration along depth-dependent horizontal isolines of time-mean density. In contrast, zonal integration along time-mean geostrophic streamlines generally only leads to an isopycnal MOC with a reduced standing-eddy part. A generalized approach of constructing meridional transport streamfunctions by two tracer fields and the generalized way to neutralize the corresponding standing-eddy part is given to summarize the discussion.

Using the results of an idealized Southern Ocean model, it is demonstrated that neglecting the depth dependence of the zonal integration paths by integrating along density contours or geostrophic streamlines of a fixed depth (“contour depth”) may represent an acceptable approximation: although the standing-eddy part then exactly vanishes only at the contour depth (except for the ageostrophic surface layer using geostrophic streamlines), the overall standing-eddy part is significantly reduced for adequate contour depths. In the idealized Southern Ocean model, density contours at middepth and surface geostrophic streamlines represent the most adequate approximations. Moreover, it is found that the effect of changing the zonal integration paths from latitude circles to curvilinear paths on the zonally averaged density is of the same order as changing from Eulerian to isopycnal averaging.

Corresponding author address: Jan Viebahn, KlimaCampus, Institute of Oceanography, University of Hamburg, Bundesstraße 53, 20146 Hamburg, Germany. E-mail: jan.viebahn@zmaw.de
Save
  • Aris, R., 1989: Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover, 286 pp.

  • Bronstein, I. N., K. A. Semendjajew, G. Musiol, and H. Mühlig, 1999: Taschenbuch der Mathematik. Harri Deutsch, 1152 pp.

  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 2006: Thickness diffusivity in the Southern Ocean. Geophys. Res. Lett., 33, L11606, doi:10.1029/2006GL026157.

  • Hallberg, B., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., and K. J. Richards, 1996: The dynamics of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 26, 753774.

  • Karoly, D. J., P. C. McIntosh, P. Berrisford, T. J. McDougall, and A. C. Hirst, 1997: Similarities of the Deacon cell in the Southern Ocean and Ferrel cells in the atmosphere. Quart. J. Roy. Meteor. Soc., 123, 519526.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32, 33153327.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., and A. C. Coward, 2003: Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model. Ocean Modell., 5, 249266.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. J. Nurser, A. C. Coward, and B. A. de Cuevas, 2007: Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J. Phys. Oceanogr., 37, 13761393.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, H. Ross, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23, 465487.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899.

  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and M.-M. Lee, 2004: Isopycnal averaging at constant height. Part I: The formulation and a case study. J. Phys. Oceanogr., 34, 27212739.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., J. Nilsson, K. Döös, and G. Broström, 2007: Thermodynamic analysis of ocean circulation. J. Phys. Oceanogr., 37, 20382052.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and V. O. Ivchenko, 2001: On the meridional circulation and balance of momentum in the Southern Ocean of POP. Ocean Dyn., 52, 7993.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and M. Visbeck, 2005: A zonally averaged model of the meridional overturning in the Southern Ocean. J. Phys. Oceanogr., 35, 11901205.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and D. P. Marshall, 2007: Overturning cells in the Southern Ocean and subtropical gyres. Ocean Sci., 3, 1730.

  • Rintoul, S. R., C. W. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 271–302.

  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226.

    • Search Google Scholar
    • Export Citation
  • Tansley, C. E., and D. P. Marshall, 2001: On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr., 31, 32583273.

  • Treguier, A. M., M. H. England, S. R. Rintoul, G. Madec, J. L. Sommer, and J.-M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Sci., 3, 491507.

    • Search Google Scholar
    • Export Citation
  • Viebahn, J., and C. Eden, 2010: Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modell., 34, 150165.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., and N. Suginohara, 2001: Oceanography: Vertical mixing in the ocean. Nature, 409, 37, doi:10.1038/35051171.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 82 4
PDF Downloads 200 62 4