• Allen, S. E., and B. M. Hickey, 2010: Dynamics of advection-driven upwelling over a shelf break submarine canyon. J. Geophys. Res., 115, C08018, doi:10.1029/2009jc005731.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., T. Markus, and J. Comiso, 2004: AMSR-E/Aqua daily L3 12.5 km brightness temperature, sea ice concentration, and snow depth. Polar grids V002 for 2010. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/ae_si12_12km_tb_sea_ice_and_snow.gd.html.]

  • Dinniman, M. S., and J. M. Klinck, 2004: A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf. Deep-Sea Res., 51, 20032022, doi:10.1016/j.dsr2.2004.07.030.

    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and W. O. Smith Jr., 2003: Cross-shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep-Sea Res., 50, 31033120, doi:10.1016/j.dsr2.2003.07.011.

    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and W. O. Smith Jr., 2007: Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. J. Geophys. Res., 112, C11013, doi:10.1029/2006JC004036.

    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and W. O. Smith Jr., 2011: A model study of Circumpolar Deep Water on the west Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Res. II, 58, 15081523, doi:10.1016/j.dsr2.2010.11.013.

    • Search Google Scholar
    • Export Citation
  • Fennel, W., and M. Schmidt, 1991: Responses to topographical forcing. J. Fluid Mech., 223, 209240.

  • Hattermann, T., O. A. Nøst, J. M. Lilly, and L. H. Smedsrud, 2012: Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys. Res. Lett., 39, L12605, doi:10.1029/2012GL051012.

    • Search Google Scholar
    • Export Citation
  • Hedström, K. S., 2009: Technical manual for a coupled sea-ice/ocean circulation model (version 3). University of Alaska Fairbanks Arctic Region Supercomputing Center Tech. Rep. OCS Study MMS 2009-062, 158 pp. [Available online at https://www.myroms.org/wiki/images/3/3b/Manual_2010.pdf.]

  • Hellmer, H. H., F. Kauker, R. Timmermann, J. Determann, and J. Rae, 2012: Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485, 225228, doi:10.1038/nature11064.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth, 2008a: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659654, doi:10.1038/ngeo316.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., A. Jenkins, and D. M. Holland, 2008b: The response of ice shelf basal melting to variations in ocean temperature. J. Climate, 21, 25582572.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22, 10331046.

  • Huppert, H. E., and K. Bryan, 1976: Topographically generated eddies. Deep-Sea Res., 23, 655679.

  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, doi:10.1038/ngeo1188.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., and S. Jacobs, 2008: Circulation and melting beneath George VI Ice Shelf, Antarctica. J. Geophys. Res., 113, C04013, doi:10.1029/2007JC004449.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. S. Jacobs, S. D. McPhail, J. R. Perrett, A. T. Webb, and D. White, 2010: Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci., 3, 468472, doi:10.1038/NGEO890.

    • Search Google Scholar
    • Export Citation
  • Joughin, I., I. M. Howat, M. Fahnestock, B. Smith, W. Krabill, R. B. Alley, H. Stern, and M. Truffer, 2008: Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res., 113, F04006, doi:10.1029/2008JF001023.

    • Search Google Scholar
    • Export Citation
  • Klinck, J. M., and M. S. Dinniman, 2010: Exchange across the shelf break at high southern latitudes. Ocean Sci., 6, 513524, doi:10.5194/os-6-513-2010.

    • Search Google Scholar
    • Export Citation
  • Klinck, J. M., E. E. Hofmann, R. C. Beardsley, B. Salihoglu, and S. Howard, 2004: Water mass properties and circulation on the west Antarctic Peninsula Continental Shelf in Austral fall and winter 2001. Deep-Sea Res., 51, 19251946, doi:10.1016/j.dsr2.2004.08.001.

    • Search Google Scholar
    • Export Citation
  • Little, C. M., A. Gnanadesikan, and R. Hallberg, 2008: Large-scale oceanographic constraints on the distribution of melting and freezing under ice shelves. J. Phys. Oceanogr., 38, 22422255.

    • Search Google Scholar
    • Export Citation
  • Little, C. M., A. Gnanadesikan, and M. Oppenheimer, 2009: How ice shelf morphology controls basal melting. J. Geophys. Res., 114, C12007, doi:10.1029/2008JC005197.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and D. C. McKee, 2012: Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf. Ocean Sci., 8, 433442, doi:10.5194/os-8-433-2012.

    • Search Google Scholar
    • Export Citation
  • Moffat, C., B. Owens, and R. C. Beardsley, 2009: On the characteristics of Circumpolar Deep Water intrusions on the west Antarctic Peninsula continental shelf. J. Geophys. Res., 114, C05017, doi:10.1029/2008JC004955.

    • Search Google Scholar
    • Export Citation
  • National Center for Atmospheric Research, cited 2010: The Antarctic Mesoscale Prediction System (AMPS). [Available online at http://www.mmm.ucar.edu/rt/amps/.]

  • Nicholls, K. W., S. Østerhus, K. Makinson, T. Gammelsrød, and E. Fahrbach, 2009: Ice-ocean processes over the continental shelf of the Southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47, RG3003, doi:10.1029/2007rg000250.

    • Search Google Scholar
    • Export Citation
  • Nick, F. M., A. Vieli, I. M. Howat, and I. Joughin, 2009: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2, 110114, doi:10.1038/NGEO394.

    • Search Google Scholar
    • Export Citation
  • Nøst, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs, 2011: Eddy overturning of the Antarctic Slope Front controls glacial melting in the eastern Weddell Sea. J. Geophys. Res., 116, C11014, doi:10.1029/2011JC006965.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., and K. Döös, 2003: Open boundary conditions for barotropic waves. J. Geophys. Res., 108, 3168, doi:10.1029/2002JC001529.

    • Search Google Scholar
    • Export Citation
  • Payne, A. J., A. Vieli, A. P. Shepherd, D. J. Wingham, and E. Rignot, 2004: Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett., 31, L23401, doi:10.1029/2004GL021284.

    • Search Google Scholar
    • Export Citation
  • Prézelin, B. B., E. E. Hofmann, C. Mengelt, and J. M. Klinck, 2000: The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J. Mar. Res., 58, 165202.

    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., R. J. Arthern, D. G. Vaughan, and L. A. Edwards, 2009: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971975, doi:10.1038/nature08471.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, doi:10.1029/2011GL046583.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2008: Computational kernel algorithms for fine-scale, multi-process, long-time oceanic simulations. Handbook of Numerical Analysis, Vol. XIV: Computational Methods for the Ocean and the Atmosphere, P. G. Ciarlet, R. Temam, and J. Tribbia, Eds., Elsevier Science Series, Vol. 14, Elsevier, 121–183, doi:10.1016/S1570-8659(08)01202-0.

  • Steig, E. J., Q. Ding, D. S. Battisti, and A. Jenkins, 2012: Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea embayment, West Antarctica. Ann. Glaciol., 53, 1928, doi:10.3189/2012AoG60A110.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1953: The currents off the coast of Queen Maud Land. Særtrykk av Nor. Geogr. Tidsskr., 14, 239249.

  • Wåhlin, A. K., X. Yuan, G. Björk, and C. Nohr, 2010: Inflow of warm Circumpolar Deep Water in the central Amundsen Shelf. J. Phys. Oceanogr., 40, 14271434.

    • Search Google Scholar
    • Export Citation
  • Walker, D. P., M. A. Brandon, A. Jenkins, J. T. Allen, J. A. Dowdeswell, and J. Evans, 2007: Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. Geophys. Res. Lett., 34, L02602, doi:10.1029/2006GL028154.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Pedlosky, and G. R. Flierl, 2011a: Cross-shelf and out-of-bay transport driven by an open-ocean current. J. Phys. Oceanogr., 41, 21682186.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Pedlosky, and G. R. Flierl, 2011b: Shelf circulation and cross-shelf transport out of a bay driven by eddies from an open-ocean current. Part I: Interaction between a barotropic vortex and a steplike topography. J. Phys. Oceanogr., 41, 889910.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 498 289 6
PDF Downloads 364 203 8

On the Role of Coastal Troughs in the Circulation of Warm Circumpolar Deep Water on Antarctic Shelves

View More View Less
  • 1 Center for Coastal Physical Oceanography, Norfolk, Virginia
Restricted access

Abstract

Oceanic exchanges across the continental shelves of Antarctica play an important role in biological systems and the mass balance of ice sheets. The focus of this study is on the mechanisms responsible for the circulation of warm Circumpolar Deep Water (CDW) within troughs running perpendicular to the continental shelf. This is examined using process-oriented numerical experiments with an eddy-resolving (1 km) 3D ocean model that includes a static and thermodynamically active ice shelf. Three mechanisms that create a significant onshore flow within the trough are identified: 1) a deep onshore flow driven by the melt of the ice shelf, 2) interaction between the longshore mean flow and the trough, and 3) interaction between a Rossby wave along the shelf break and the trough. In each case the onshore flow is sufficient to maintain the warm temperatures underneath the ice shelf and basal melt rates of O(1 m yr−1). The third mechanism in particular reproduces several features revealed by moorings from Marguerite Trough (Bellingshausen Sea): the temperature maximum at middepth, a stronger intrusion on the downstream edge of the trough, and the appearance of warm anticyclonic anomalies every week. Sensitivity experiments highlight the need to properly resolve the small baroclinic radii of these regions (5 km on the shelf)—simulations at 3-km resolution cannot reproduce mechanism 3 and the associated heat transport.

Corresponding author address: Pierre St-Laurent, Center for Coastal Physical Oceanography, 4111 Monarch Way, Norfolk, VA 23529. E-mail: pierre@ccpo.odu.edu

Abstract

Oceanic exchanges across the continental shelves of Antarctica play an important role in biological systems and the mass balance of ice sheets. The focus of this study is on the mechanisms responsible for the circulation of warm Circumpolar Deep Water (CDW) within troughs running perpendicular to the continental shelf. This is examined using process-oriented numerical experiments with an eddy-resolving (1 km) 3D ocean model that includes a static and thermodynamically active ice shelf. Three mechanisms that create a significant onshore flow within the trough are identified: 1) a deep onshore flow driven by the melt of the ice shelf, 2) interaction between the longshore mean flow and the trough, and 3) interaction between a Rossby wave along the shelf break and the trough. In each case the onshore flow is sufficient to maintain the warm temperatures underneath the ice shelf and basal melt rates of O(1 m yr−1). The third mechanism in particular reproduces several features revealed by moorings from Marguerite Trough (Bellingshausen Sea): the temperature maximum at middepth, a stronger intrusion on the downstream edge of the trough, and the appearance of warm anticyclonic anomalies every week. Sensitivity experiments highlight the need to properly resolve the small baroclinic radii of these regions (5 km on the shelf)—simulations at 3-km resolution cannot reproduce mechanism 3 and the associated heat transport.

Corresponding author address: Pierre St-Laurent, Center for Coastal Physical Oceanography, 4111 Monarch Way, Norfolk, VA 23529. E-mail: pierre@ccpo.odu.edu
Save