• Adcock, S. T., and D. P. Marshall, 2000: Interactions between geostrophic eddies and the mean circulation over large-scale bottom topography. J. Phys. Oceanogr., 30, 32233238.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238.

  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterization of mesoscale tracer transports. J. Climate, 8, 29672987.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239.

  • Eden, C., R. J. Greatbatch, and J. Willebrand, 2007: A diagnosis of thickness fluxes in an eddy-resolving model. J. Phys. Oceanogr., 37, 727742.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gent, P. R., J. Willebrand, T. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499528.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and G. Li, 2000: Alongslope mean flow and an associated upslope bolus flux of tracer in a parameterization of mesoscale turbulence. Deep-Sea Res., 47, 709735.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22, 10331046.

  • Huang, R., and W. Wang, 2003: Gravitational potential energy sinks/sources in the oceans. Near Boundary Processes and Their Parameterization: Proc. 13th ’Aha Huliko’a Hawaiian Winter Worshop, Honolulu, HI, University of Hawaii at Manoa, 239–247.

  • Hughes, C., and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study on the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, doi:10.1029/2007JC004371.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Modell., 32, 188204.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean-preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2003: Equilibration of a warm pumped lens on a beta plane. J. Phys. Oceanogr., 33, 885899.

  • Radko, T., and J. Marshall, 2004: Eddy-induced diapycnal fluxes and their role in the maintenance of the thermocline. J. Phys. Oceanogr., 34, 372383.

    • Search Google Scholar
    • Export Citation
  • Roquet, F., C. Wunsch, and G. Madec, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 23282342.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep-Sea Res., 56, 295304.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic at 1/10°. J. Phys. Oceanogr., 30, 15321561.

    • Search Google Scholar
    • Export Citation
  • Stone, P., 1972: A simplified radiative–dynamical model for the static stability of the rotating atmosphere. J. Atmos. Sci., 29, 405418.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: On the specification of eddy transfer coefficients in coarse resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., P. Cessi, J. L. McClean, and M. E. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett., 35, L23605, doi:10.1029/2008GL036138.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., and R. J. Greatbatch, 2007: Wind work in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 34, L04606, doi:10.1029/2006GL028907.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608612.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 152 13
PDF Downloads 332 150 15

Vertical Eddy Energy Fluxes in the North Atlantic Subtropical and Subpolar Gyres

View More View Less
  • 1 School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
  • | 2 Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
Restricted access

Abstract

Eddy energy generation and energy fluxes are examined in a realistic eddy-resolving model of the North Atlantic. Over 80% of the wind energy input is found to be released by the generation of eddies through baroclinic instability. The eddy energy generation is located near the surface in the subtropical gyre but deeper down in the subpolar gyre. To reconcile the mismatch between the depth of eddy energy production and the vertical structure of the horizontal dispersion of eddy energy, the vertical eddy energy flux is downward in the subtropical gyre and upward in the subpolar gyre.

Corresponding author address: Xiaoming Zhai, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. E-mail: xiaoming.zhai@uea.ac.uk

Abstract

Eddy energy generation and energy fluxes are examined in a realistic eddy-resolving model of the North Atlantic. Over 80% of the wind energy input is found to be released by the generation of eddies through baroclinic instability. The eddy energy generation is located near the surface in the subtropical gyre but deeper down in the subpolar gyre. To reconcile the mismatch between the depth of eddy energy production and the vertical structure of the horizontal dispersion of eddy energy, the vertical eddy energy flux is downward in the subtropical gyre and upward in the subpolar gyre.

Corresponding author address: Xiaoming Zhai, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. E-mail: xiaoming.zhai@uea.ac.uk
Save