• Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res., 51, 30693101.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., J. X. Mitrovica, D. R. MacAyeal, and G. A. Milne, 2008: On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanography, 23, PA3211, doi:10.1029/2007PA001573.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29, 307338.

  • Balmforth, N., and T. Peacock, 2009: Tidal conversion by supercritical topography. J. Phys. Oceanogr., 39, 19651974.

  • Bell, T., 1975: Topographically generated internal wave in the open ocean. J. Geophys. Res., 80, 320327.

  • Egbert, G. D., and R. D. Ray, 2000: Significant tidal dissipation in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204.

  • Egbert, G. D., and R. D. Ray, 2003: Semidiurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennet, and M. G. G. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., B. G. Bills, and R. D. Ray, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Garner, S., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62, 23022315.

  • Gouretski, V., and K. Koltermann, 2004: WOCE global hydrographic climatology. Berichte Bundesamtes für Seeschifffahrt und Hydrographie Rep. 35, 55 pp.

  • Green, J. A. M., 2010: Ocean tides and resonance. Ocean Dyn., 60, 12431253, doi:10.1007/s10236-010-0331-1.

  • Green, J. A. M., C. L. Green, G. R. Bigg, T. P. Rippeth, J. D. Scourse, and K. Uehara, 2009: Tidal mixing and the meridional overturning circulation from the Last Glacial Maximum. Geophys. Res. Lett., 36, L15603, doi:10.1029/2009GL039309.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727746.

  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814.

  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J., E. Montgomery, K. Polzin, L. S. Laurent, R. Schmitt, and J. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010.

  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Nycander, J., 2006: Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid Mech., 567, 415432.

  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Saenko, O. A., 2006: The effect of localized mixing on the ocean circulation and time-dependent climate change. J. Phys. Oceanogr., 36, 140160.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1998: Large-scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28, 721726.

  • Schorghofer, N., 2010: Expressions for tidal conversion at seafloor topography using physical space integrals. Fluid Dyn. Res., 42, 065503, doi:10.1088/0169-5983/42/6/065503.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., R. Hallberg, and B. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res., 51 (25–26), 30433068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., S. Jayne, L. S. Laurent, and A. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Sjöberg, B., and A. Stigebrandt, 1992: Computations of the geographical distribution of the energy flux to mixing processes via internal tides: Its horizontal distribution and the associated vertical circulation in the ocean. Deep-Sea Res., 39, 269291.

    • Search Google Scholar
    • Export Citation
  • Smith, S. L., and W. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566.

  • Stigebrandt, A., 1999: Resistance to barotropic tidal flow in straits by baroclinic wave drag. J. Phys. Oceanogr., 29, 191197.

  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1961: Thermohaline convection with two stable regimes. Tellus, 13, 224230.

  • Toole, J. M., R. W. Schmitt, K. L. Polzin, and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102, 947959.

    • Search Google Scholar
    • Export Citation
  • Uehara, K., J. D. Scourse, K. J. Horsburgh, K. Lambeck, and A. P. Purcell, 2006: Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present. J. Geophys. Res., 111, C09025, doi:10.1029/2006JC003531.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2006: Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. J. Phys. Oceanogr., 36, 10191035.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., A. Levermann, M. G. Morgan, T. Kuhlbrodt, S. Rahmstorf, and D. W. Keith, 2007: Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Climatic Change, 83, 235265, doi:10.1007/s10584-007-9246-3.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. S. Carter, 2009: Estimates of M-2 internal tide generation over Mid-Atlantic ridge topography. J. Phys. Oceanogr., 39, 26352651.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 205 13
PDF Downloads 254 164 8

A Comparison of Tidal Conversion Parameterizations for Tidal Models

View More View Less
  • 1 School of Ocean Sciences, Bangor University, Menai Bridge, United Kingdom
  • | 2 Department of Meteorology, Stockholm University, Stockholm, Sweden
Restricted access

Abstract

The conversion of barotropic to baroclinic tidal energy in the global abyssal ocean is calculated using three different formulations. The calculations are done both “offline,” that is, using externally given tidal currents to estimate the energy conversion, and “online,” that is, by using the formulations to parameterize linear wave drag in a prognostic tidal model. All three schemes produce globally integrated offline dissipation rates beneath 500-m depth of ~0.6–0.8 TW for the M2 constituent, but the spatial structures vary significantly between the parameterizations. Detailed investigations of the energy transfer in local areas confirm the global results: there are large differences between the schemes, although the horizontally integrated conversion rates are similar. The online simulations are evaluated by comparing the sea surface elevation with data from the TOPEX/Poseidon database, and the error is then significantly lower when using the parameterization provided by Nycander than with the other two parameterizations examined.

Corresponding author address: Mattias Green, School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, LL59 5AB, United Kingdom. E-mail: m.green@bangor.ac.uk

Abstract

The conversion of barotropic to baroclinic tidal energy in the global abyssal ocean is calculated using three different formulations. The calculations are done both “offline,” that is, using externally given tidal currents to estimate the energy conversion, and “online,” that is, by using the formulations to parameterize linear wave drag in a prognostic tidal model. All three schemes produce globally integrated offline dissipation rates beneath 500-m depth of ~0.6–0.8 TW for the M2 constituent, but the spatial structures vary significantly between the parameterizations. Detailed investigations of the energy transfer in local areas confirm the global results: there are large differences between the schemes, although the horizontally integrated conversion rates are similar. The online simulations are evaluated by comparing the sea surface elevation with data from the TOPEX/Poseidon database, and the error is then significantly lower when using the parameterization provided by Nycander than with the other two parameterizations examined.

Corresponding author address: Mattias Green, School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, LL59 5AB, United Kingdom. E-mail: m.green@bangor.ac.uk
Save