• Alford, M. H., 2003: Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature, 423, 159163, doi:10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. A. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 9971018.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222.

    • Search Google Scholar
    • Export Citation
  • Althaus, A. M., E. Kunze, and T. B. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527.

    • Search Google Scholar
    • Export Citation
  • Cacchione, D., and C. Wunsch, 1974: Experimental study of internal waves over a slope. J. Fluid Mech., 66, 223239, doi:10.1017/S0022112074000164.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. Gregg, 2002: Intense, variable mixing near the head of Monterey submarine canyon. J. Phys. Oceanogr., 32, 31453165.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian islands. J. Phys. Oceanogr., 38, 22052223.

    • Search Google Scholar
    • Export Citation
  • Cummins, P., J. Cherniawski, and M. Foreman, 2001: North Pacific internal tides from the Aleutian ridge: Altimeter observations and modelling. J. Mar. Res., 59, 167191.

    • Search Google Scholar
    • Export Citation
  • Dale, A., M. Inall, C. Griffiths, M. Priede, and N. King, 2010: Non-linear tidal processes on the flanks of the Mid-Atlantic Ridge. Eos, Trans. Amer. Geophys. Union,91 (Ocean Sci. Meeting Suppl.), Abstract PO23D-05.

  • Decloedt, T., and D. S. Luther, 2010: On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J. Phys. Oceanogr., 40, 487508.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87 (C12), 96019613.

  • Dunkerton, T. J., D. Delisi, and M. Lelong, 1998: Alongslope current generated by obliquely incident internal gravity waves. Geophys. Res. Lett., 25, 38713874.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22 47522 502.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1982: Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87, 525538.

  • Eriksen, C. C., 1998: Internal wave reflection and mixing at Fierberling Guyot. J. Geophys. Res., 103 (C2), 29772994.

  • Friedrich, T., A. Timmermann, T. Decloedt, D. S. Luther, and A. Mouchet, 2011: The effect of topography-enhanced diapycnal mixing on ocean and atmospheric circulation and marine biogeochemistry. Ocean Modell., 39 (3–4), 262274.

    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 (C7), 96869698.

  • Henyey, F. S., and A. Hoering, 1997: Energetics of borelike internal waves. J. Geophys. Res., 102 (C2), 33233330.

  • Hosegood, P., and H. van Haren, 2004: Near-bed solibores over the continental slope in the Faeroe-Shetland Channel. Deep-Sea Res. II, 51, 29432971.

    • Search Google Scholar
    • Export Citation
  • Jayne, S., and L. C. S. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814.

  • Johnson, G. C., R. G. Lueck, and T. B. Sanford, 1994: Stress on the Mediterranean Outflow plume: Part II. turbulent dissipation and shear measurements. J. Phys. Oceanogr., 24, 20842092.

    • Search Google Scholar
    • Export Citation
  • Katsumata, K., 2006: Tidal stirring and mixing on the Australian North West Shelf. Mar. Freshwater Res., 57, 243254.

  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, doi:10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, K. I. Martini, M. H. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., R. W. Schmitt, and J. M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942957.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. Rosenfield, G. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. Chereskin, and A. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182.

    • Search Google Scholar
    • Export Citation
  • Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield, and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and A. Adcroft, 2003: Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 22242246.

  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a steep ridge. J. Phys. Oceanogr., 38, 19491964.

    • Search Google Scholar
    • Export Citation
  • Leichter, J. J., S. Wing, S. Miller, and M. W. Denny, 1996: Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr., 41, 14901501.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101 (C6), 14 09514 109.

  • Moum, J. N., D. Caldwell, J. Nash, and G. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., J. Klymak, J. Nash, A. Perlin, and W. Smyth, 2007: Energy transport by nonlinear internal waves. J. Phys. Oceanogr., 37, 19681985.

    • Search Google Scholar
    • Export Citation
  • Nash, J., E. Kunze, J. Toole, and R. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134.

    • Search Google Scholar
    • Export Citation
  • Nash, J., M. Alford, E. Kunze, K. I. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389.

  • Pineda, J., 1991: Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science, 253, 548551.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236.

  • Ray, R. D., and G. T. Mitchum, 1997: Surfest manifestations of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 12591262.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51 (25–26), 30433068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Slinn, D. N., and J. Riley, 1996: Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain. Dyn. Atmos. Oceans, 24 (1–4), 5162.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and R. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 27, 14041424.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., H. Simmons, and S. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London, A286, 125181.

  • Thorpe, S., 1992: Thermal fronts caused by interal gravity waves reflecting from a slope. J. Phys. Oceanogr., 22, 105108.

  • Thorpe, S., 1999: Fronts formed by obliquely reflecting internal waves at a sloping boundary. J. Phys. Oceanogr., 29, 24622467.

  • Thurnherr, A., L. St. Laurent, K. Speer, J. Toole, and J. Ledwell, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35, 13701381.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Goustiaux, 2010: A deep-ocean Kelvin-Helmholtz billow train. Geophys. Res. Lett., 37, L03605, doi:10.1029/2009GL041890.

    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S., and O. Fringer, 2005: Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves. Geophys. Res. Lett., 32, L15603, doi:10.1029/2005GL023432.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., and M. H. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 456 298 6
PDF Downloads 312 220 5

Internal Bores and Breaking Internal Tides on the Oregon Continental Slope

View More View Less
  • 1 University of Alaska Fairbanks, Fairbanks, Alaska
  • | 2 Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington
  • | 3 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
Restricted access

Abstract

Observations of breaking internal tides on the Oregon continental slope during a 40-day deployment of 5 moorings along 43°12′N are presented. Remotely generated internal tides shoal onto the slope, steepen, break, and form turbulent bores that propagate upslope independently of the internal tide. A high-resolution snapshot of a single bore is captured from lowered acoustic Doppler current profilers (LADCP)/CTD profiles in a 25-h time series at 1200 m. The bore is cold, salty, over 100 m tall, and has a turbulent head where instantaneous dissipation rates are enhanced (ε > 10−6 W kg−1) and sediment is resuspended. At the two deepest slope moorings (1452 and 1780 m), similar borelike phenomena are observed in near-bottom high-resolution temperature time series. Mean dissipation rates and diapycnal diffusivities increase by a factor of 2 when bores are present ( W kg−1 and m s−1) and observed internal tides are energetic enough to drive these enhanced dissipation rates. Globally, the authors estimate an average of 1.3 kW m−1 of internal tide energy flux is directed onto continental slopes. On the Oregon slope, internal tide fluxes are smaller, suggesting that it is a relatively weak internal tide sink. Mixing associated with the breaking of internal tides is therefore likely to be larger on other continental slopes.

Corresponding author address: Kim Martini, University of Alaska Fairbanks, 905 N. Koyukuk Drive, P.O. Box 757220, Fairbanks, AK 99775. E-mail: k.martini@alaska.edu

Abstract

Observations of breaking internal tides on the Oregon continental slope during a 40-day deployment of 5 moorings along 43°12′N are presented. Remotely generated internal tides shoal onto the slope, steepen, break, and form turbulent bores that propagate upslope independently of the internal tide. A high-resolution snapshot of a single bore is captured from lowered acoustic Doppler current profilers (LADCP)/CTD profiles in a 25-h time series at 1200 m. The bore is cold, salty, over 100 m tall, and has a turbulent head where instantaneous dissipation rates are enhanced (ε > 10−6 W kg−1) and sediment is resuspended. At the two deepest slope moorings (1452 and 1780 m), similar borelike phenomena are observed in near-bottom high-resolution temperature time series. Mean dissipation rates and diapycnal diffusivities increase by a factor of 2 when bores are present ( W kg−1 and m s−1) and observed internal tides are energetic enough to drive these enhanced dissipation rates. Globally, the authors estimate an average of 1.3 kW m−1 of internal tide energy flux is directed onto continental slopes. On the Oregon slope, internal tide fluxes are smaller, suggesting that it is a relatively weak internal tide sink. Mixing associated with the breaking of internal tides is therefore likely to be larger on other continental slopes.

Corresponding author address: Kim Martini, University of Alaska Fairbanks, 905 N. Koyukuk Drive, P.O. Box 757220, Fairbanks, AK 99775. E-mail: k.martini@alaska.edu
Save