• Bennett, A., 2006: Lagrangian Fluid Dynamics. Cambridge University Press, 308 pp.

  • Bouchut, F., J. L. Sommer, and V. Zeitlin, 2005: Breaking of balanced and unbalanced equatorial waves. Chaos,15, 013503, doi:10.1063/1.1857171.

  • Boyd, J. P., 1980: The nonlinear equatorial Kelvin wave. J. Phys. Oceanogr., 10, 111.

  • Boyd, J. P., 1983: Equatorial solitary waves. Part II: Envelope solitons. J. Phys. Oceanogr., 13, 428449.

  • Boyd, J. P., 1984: Equatorial solitary waves. Part IV: Kelvin solitons in a shear flow. Dyn. Atmos. Oceans, 8, 173184.

  • Boyd, J. P., 1998: High-order models for the nonlinear shallow water wave equations on the equatorial β-plane with application to Kelvin wave frontogenesis. Dyn. Atmos. Oceans, 28, 6991.

    • Search Google Scholar
    • Export Citation
  • Constantin, A., 2001a: Edge waves along a sloping beach. J. Phys., 34A, 97239731.

  • Constantin, A., 2001b: On the deep water wave motion. J. Phys., 34A, 14051417.

  • Constantin, A., 2006: The trajectories of particles in Stokes waves. Invent. Math., 166, 523535.

  • Constantin, A., 2011: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 321 pp.

  • Constantin, A., 2012: An exact solution for equatorially trapped waves. J. Geophys. Res.,117, C05029, doi:10.1029/2012JC007879.

  • Constantin, A., and W. Strauss, 2010: Pressure beneath a Stokes wave. Commun. Pure Appl. Math., 53, 533557.

  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics. Academic Press, 320 pp.

  • Fedorov, A. V., and W. K. Melville, 2000: Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr., 30, 16921705.

  • Fedorov, A. V., and J. N. Brown, 2009: Equatorial waves. Encyclopedia of Ocean Sciences, J. Steele, Ed., Academic Press, 3679–3695.

  • Froude, W., 1862: On the rolling of ships. Trans. Inst. Naval Arch., 3, 4562.

  • Gallagher, I., and L. Saint-Raymond, 2007: On the influence of the Earth’s rotation on geophysical flows. Handbook of Mathematical Fluid Mechanics, S. Friedlander and D. Serre, Eds., Vol. 4, North-Holland, 201–329.

  • Gerstner, F., 1809: Theorie der Wellen samt einer daraus abgeleiteten theorie der deichprofile (in German). Ann. Phys., 2, 412445.

  • Gill, A., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Greatbatch, R. J., 1985: Kelvin wave fronts, Rossby solitary waves and the nonlinear spin-up of the equatorial oceans. J. Geophys. Res., 90, 90979107.

    • Search Google Scholar
    • Export Citation
  • Henry, D., 2008a: On Gerstner’s water wave. J. Nonlinear Math. Phys., 15, 8795.

  • Henry, D., 2008b: On the deep-water Stokes flow. Int. Math. Res. Not., 22, RNN071, doi:10.1093/imrn/rnn071.

  • Li, X., P. Chang, and R. C. Pacanowski, 1996: A wave-induced stirring mechanism in the mid-depth equatorial ocean. J. Mar. Res., 54, 487520.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1969: On the transport of mass by time-varying ocean currents. Deep-Sea Res., 16, 431447.

  • Majda, A. J., and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 564 pp.

  • Majda, A. J., R. R. Rosales, E. G. Tabak, and C. V. Turner, 1999: Interaction of large-scale equatorial waves and dispersion of Kelvin waves through topographic resonances. J. Atmos. Sci., 56, 41184133.

    • Search Google Scholar
    • Export Citation
  • Marshall, H. G., and J. P. Boyd, 1987: Solitons in a continuously stratified equatorial ocean. J. Phys. Oceanogr., 17, 10161031.

  • McCreary, J. P., 1981: A linear stratified model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, A278, 603635.

  • McCreary, J. P., 1984: Equatorial beams. J. Mar. Res., 42, 395430.

  • Moore, D. W., 1970: The mass transport velocity induced by free oscillations at a single frequency. J. Geophys. Fluid Dyn., 1, 237247.

    • Search Google Scholar
    • Export Citation
  • Moore, D. W., and S. G. H. Philander, 1977: Modelling of the tropical ocean. The Sea, E. D. Goldberg, Ed., Marine Modelling, John Wiley and Sons, 319–361.

  • Moum, J. N., J. D. Nash, and W. D. Smyth, 2011: Narrowband oscillations in the upper equatorial ocean. Part I: Interpretation as shear instability. J. Phys. Oceanogr., 41, 397411.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer, 742 pp.

  • Pollard, R. T., 1970: Surface waves with rotation: An exact solution. J. Geophys. Res., 75, 58955898.

  • Rankine, W. J. M., 1863: On the exact form of waves near the surface of deep water. Philos. Trans. Roy. Soc. London, A153, 127138.

  • Reech, F., 1869: Sur la théorie des ondes liquides périodiques (in French). C. Roy. Acad. Sci. Paris, 68, 10991101.

  • Ripa, P., 1982: Nonlinear wave-wave interactions in a one-layer reduced-gravity model on the equatorial beta plane. J. Phys. Oceanogr., 12, 97111.

    • Search Google Scholar
    • Export Citation
  • Ripa, P., 1983a: Weak interaction of equatorial waves in a one-layer model. Part I: General properties. J. Phys. Oceanogr., 13, 12081226.

    • Search Google Scholar
    • Export Citation
  • Ripa, P., 1983b: Weak interaction of equatorial waves in a one-layer model. Part II: Applications. J. Phys. Oceanogr., 13, 12271240.

  • Smyth, W. D., J. N. Moum, and J. D. Nash, 2011: Narrowband oscillations in the upper equatorial ocean. Part II: Properties of shear instabilities. J. Phys. Oceanogr., 41, 412428.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 772 pp.

  • Weber, J. E., 2012: A note on trapped Gerstner waves. J. Geophys. Res.,117, C03048, doi:10.1029/2011JC007776.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 100 11
PDF Downloads 112 62 4

Some Three-Dimensional Nonlinear Equatorial Flows

View More View Less
  • 1 King’s College London, London, United Kingdom
Restricted access

Abstract

This study presents some explicit exact solutions for nonlinear geophysical ocean waves in the β-plane approximation near the equator. The solutions are provided in Lagrangian coordinates by describing the path of each particle. The unidirectional equatorially trapped waves are symmetric about the equator and propagate eastward above the thermocline and beneath the near-surface layer to which wind effects are confined. At each latitude the flow pattern represents a traveling wave.

Corresponding author address: Adrian Constantin, King’s College London, Strand, WC2R 2LS, London, United Kingdom. E-mail: adrian.constantin@kcl.ac.uk

Current affiliation: Faculty of Mathematics, University of Vienna, Vienna, Austria.

Abstract

This study presents some explicit exact solutions for nonlinear geophysical ocean waves in the β-plane approximation near the equator. The solutions are provided in Lagrangian coordinates by describing the path of each particle. The unidirectional equatorially trapped waves are symmetric about the equator and propagate eastward above the thermocline and beneath the near-surface layer to which wind effects are confined. At each latitude the flow pattern represents a traveling wave.

Corresponding author address: Adrian Constantin, King’s College London, Strand, WC2R 2LS, London, United Kingdom. E-mail: adrian.constantin@kcl.ac.uk

Current affiliation: Faculty of Mathematics, University of Vienna, Vienna, Austria.

Save