• Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propogation of internal waves. Nature, 423, 159163.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., R.-C. Lien, H. Simmons, J. Klymak, S. Ramp, Y. J. Yang, D. Tang, and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222.

    • Search Google Scholar
    • Export Citation
  • Bergh, J., and J. Berntsen, 2009: Numerical studies of wind forced internal waves with a nonhydrostatic model. Ocean Dyn., 59, 10251041.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., S. Legg, and J. Klymak, 2012: Double ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., O. B. Fringer, and E. D. Zaron, 2012: Regional models of internal tides. Oceanography (Wash. D.C.), 25, 5665.

  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075.

    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., 2002: Energy levels, phase, and amplitude modulation of the baroclinic tide off Hawaii. J. Phys. Oceanogr., 32, 26402651.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and L.-Y. Oey, 1997: Simulation of barotropic and baroclinic tides off Northern British Columbia. J. Phys. Oceanogr., 27, 762781.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., W. R. Young, and S. L. Smith, 2006: Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36, 10721084.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T. Y. Tang, and Y.-J. Yang, 2004: Internal tide and nonlinear internal wave behaviour at the continental slope in the northern South China Sea. J. Ocean. Eng., 29, 11051130.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., B. D. Cornuelle, P. F. Worcester, B. M. Howe, and D. S. Luther, 1995: Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25, 631647.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22 47522 502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., Q. Li, and H.-H. Park, 2009: Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmos.–Ocean, 47, 267280.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., M. H. Alford, R.-C. Lien, Y. J. Yang, M.-H. Chang, and Q. Li, 2011: From Luzon to Dongsha Plateau—Stages in the life of an internal wave. Oceanography, 24, 6477.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 6, 141164.

  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281.

    • Search Google Scholar
    • Export Citation
  • Hall, R. A., and G. S. Carter, 2011: Internal tides in Monterey submarine canyon. J. Phys. Oceanogr., 41, 186204.

  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610619.

    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., 1987: Internal hydraulic jumps and solitons at a shelf break region on the Australian north west shelf. J. Geophys. Res., 92 (C5), 54055416.

    • Search Google Scholar
    • Export Citation
  • Intergovernmental Oceanographic Commission, 2003: Centenary edition of the GEBCO Digital Atlas. British Oceanographic Data Centre, CD-ROM.

  • Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802.

  • Jefferies, H., 1920: Tidal friction in shallow seas. Philos. Trans. Roy. Soc. London, A221, 239264.

  • Johnston, T. M. S., M. Merrifield, and P. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res.,108, 3365, doi:10.1029/2003JC001844.

  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2007: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2010: The breaking and scattering of internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., G. D. Egbert, J. S. Allen, R. N. Miller, S. Y. Erofeeva, and P. M. Kosro, 2003: The M2 internal tide off Oregon: Inferences from data assimilation. J. Phys. Oceanogr., 33, 17331757.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Liao, G., Y. Yuan, K. Arata, C. Yang, H. Chen, T. Noakazu, G. Noriaki, and M. Masanori, 2010: Analysis of internal tidal characteristics in the layer above 450 m from acoustic Doppler current profiler observations in the Luzon Strait. Sci. China Ser.,54D, 1078–1091.

  • Lien, R. C., T. Y. Tang, M. H. Chang, and E. A. D’Asaro, 2005: Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32, L05615, doi:10.1029/2004GL022012.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., T. Ezer, and L. Y. Oey, 1994: The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Oceanic Technol., 11, 11261134.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and P. E. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107, 3179, doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010.

  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106 (C10), 22 44122 449.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Powell, B. S., I. Janekovic, G. S. Carter, and M. A. Merrifield, 2012: Sensitivity of internal tide generation in Hawaii. Geophys. Res. Lett., 39, L10606, doi:10.1029/2012GL051724.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236.

  • Rainville, L., T. M. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea Part 1: Sources and deep water propogation. J. Ocean. Eng., 29, 11571181.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 12591262.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126, 15411580.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404.

    • Search Google Scholar
    • Export Citation
  • Sikiric, M. D., I. Janekovic, and M. Kuzmic, 2009: A new approach to bathymetry smoothing in sigma-coordinate ocean models. Ocean Modell., 29, 128136.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068.

    • Search Google Scholar
    • Export Citation
  • Vitousek, S., and O. B. Fringer, 2011: Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modell.,40, 72–86.

  • Wajsowicz, R. C., 1993: A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. J. Comput. Phys., 105, 333338.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., and E. D’Asaro, 2011: A perfect focus of the internal tide from the Mariana Arc. Geophys. Res. Lett., 38, L14609, doi:10.1029/2011GL047909.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., V. Klemas, Q. Zheng, and X.-H. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L06302, doi:10.1029/2003GL019077.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. S. Carter, 2009: Model estimates of M2 internal tide generation over mid-Atlantic ridge topography. J. Phys. Oceanogr., 39, 26352651.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., M. A. Merrifield, G. S. Carter, D. S. Luther, M. D. Levine, and T. J. Boyd, 2011: Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 20212036.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 99 3
PDF Downloads 331 83 2

Effects of Remote Generation Sites on Model Estimates of M2 Internal Tides in the Philippine Sea

View More View Less
  • 1 University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

This study investigates the impact of remotely generated internal tides on model estimates of barotropic to baroclinic tidal conversion for two generation sites bounding the Philippine Sea: the Luzon Strait and the Mariana Island Arc. A primitive equation model is used to characterize the internal tides generated by the principal semidiurnal tide (M2) over a domain encompassing the two generation sites. Energetic internal tides are generated at the Luzon Strait where nearly 17 GW of barotropic tide energy is converted to baroclinic energy, of which 44% (4.78 GW) is radiated eastward into the Philippine Sea. From the Mariana Arc, baroclinic energy propagates westward into the Philippine Sea as a result of 3.82 GW of barotropic to baroclinic energy conversion. Simulations that focus on each generation site without influence of the other are performed, and comparisons show that remotely generated internal tides have a significant effect on local conversion at the two sites. Total conversion is greater in the absence of remotely generated internal tides at both sites: 11% greater at the Luzon Strait and 65% greater at the Mariana Arc. The first three modes of the remotely generated internal tides traverse the basin and alter the amplitude and phase of bottom pressure. The arrival of the remote internal tides varies significantly with changing stratification and mesoscale circulation. The results suggest that an important source of variability in local conversion around the globe is due to remotely generated internal tides.

School of Ocean and Earth Science and Technology Publication 8746.

Corresponding author address: Colette Kerry, Dept. of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd., Honolulu, HI 96822. E-mail: ckerry@hawaii.edu

Abstract

This study investigates the impact of remotely generated internal tides on model estimates of barotropic to baroclinic tidal conversion for two generation sites bounding the Philippine Sea: the Luzon Strait and the Mariana Island Arc. A primitive equation model is used to characterize the internal tides generated by the principal semidiurnal tide (M2) over a domain encompassing the two generation sites. Energetic internal tides are generated at the Luzon Strait where nearly 17 GW of barotropic tide energy is converted to baroclinic energy, of which 44% (4.78 GW) is radiated eastward into the Philippine Sea. From the Mariana Arc, baroclinic energy propagates westward into the Philippine Sea as a result of 3.82 GW of barotropic to baroclinic energy conversion. Simulations that focus on each generation site without influence of the other are performed, and comparisons show that remotely generated internal tides have a significant effect on local conversion at the two sites. Total conversion is greater in the absence of remotely generated internal tides at both sites: 11% greater at the Luzon Strait and 65% greater at the Mariana Arc. The first three modes of the remotely generated internal tides traverse the basin and alter the amplitude and phase of bottom pressure. The arrival of the remote internal tides varies significantly with changing stratification and mesoscale circulation. The results suggest that an important source of variability in local conversion around the globe is due to remotely generated internal tides.

School of Ocean and Earth Science and Technology Publication 8746.

Corresponding author address: Colette Kerry, Dept. of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd., Honolulu, HI 96822. E-mail: ckerry@hawaii.edu
Save