• Agence France-Presse, cited 2003: Philippines: Typhoon Linfa downgraded to temperate depression, bringing heavy rainfall. [Available online at http://reliefweb.int/node/127324.]

  • Anderson, S. P., A. Hinton, and R. A. Weller, 1998: Moored observations of precipitation temperature. J. Atmos. Oceanic Technol., 15, 979986.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J. S. Hsieh, 2012: Ocean barrier layers effect on tropical cyclone intensification. Proc. Natl. Acad. Sci.,109, 14 343–14 347.

  • Bender, M., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W., and R. A. Anthes, 1978: Numerical simulations of the ocean’s nonlinear baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468480.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561.

    • Search Google Scholar
    • Export Citation
  • Collecte Localisation Satellites, 2011: SSALTO/DUACS user handbook CNES/IFREMER Tech. Rep CLS-DOS-NT-06-034, 2rev5, 70 pp. [Available online at http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_duacs.pdf.]

  • Crawford, G. B., and W. G. Large, 1996: A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873891.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, P. Niiler, C. A. Paulson, and P. Van Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett.,34, L15609, doi:10.1029/2007GL030160.

  • de Boyer Montégut, C., G. Madec, A. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res.,109, C12003, doi:10.1029/2007GL030160.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Wea. Forecasting, 20, 531543.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. Knaff, and C. Sampson, 2007: Evaluation of long-term trends in tropical cyclone intensity forecasts. Meteor. Atmos. Phys., 97, 1928.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152.

  • Ferry, N., and Coauthors, 2010: Mercator global eddy permitting ocean reanalysis GLORYS1V1: Description and results. Mercator Quarterly Newsletter, No. 36, Mercator Ocean Office, Toulouse, France, 15–27.

  • Ferry, N., and Coauthors, 2012: GLORYS2V1 global ocean reanalysis of the altimetric era (1993-2009) at mesoscale. Mercator Quarterly Newsletter, No. 44, Mercator Ocean Office, Toulouse, France 28–39.

  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Godfrey, J. S., and E. J. Lindstrom, 1989: The heat budget of the equatorial western Pacific surface mixed layer. J. Geophys. Res., 94 (C6), 80078017.

    • Search Google Scholar
    • Export Citation
  • Gosnell, R., C. Fairall, and P. Webster, 1995: The sensible heat of rainfall in the tropical ocean. J. Geophys. Res.,100 (C9), 18 437–18 442.

  • Greatbatch, R. J., 1983: On the response of the ocean to a moving storm: The nonlinear dynamics. J. Phys. Oceanogr., 13, 357367.

  • Greatbatch, R. J., 1984: On the response of the ocean to a moving storm: Parameters and scales. J. Phys. Oceanogr., 14, 5978.

  • Hu, A. and G. A. Meehl, 2009: Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys. Res. Lett.,36, L03702, doi:10.1029/2008GL036680.

  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles Historical and real-time data. J. Mar. Syst., 65, 158175.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and C. Koblinsky, 2007: Effects of precipitation on the upper-ocean response to a hurricane. Mon. Wea. Rev., 135, 22072225.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from 8 seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., P. Marchesiello, C. E. Menkes, J. Lefvre, E. M. Vincent, M. Lengaigne, and F. Chauvin, 2011: Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability. J. Climate, 24, 325.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., and Coauthors, 2012: Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J. Phys. Oceanogr., 42, 18821906.

    • Search Google Scholar
    • Export Citation
  • Juza, M., T. Penduff, J. M. Brankart, and B. Barnier, 2012: Estimating the distortion of mixed layer property distributions induced by the Argo sampling. J. Oper. Oceanogr., 5, 4558.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. De Maria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Levy, M., and Coauthors, 2012: Contribution of tropical cyclones to the air-sea CO2 flux: A global view. Global Biogeochem. Cycles,26, GB2001, doi:10.1029/2011GB004145.

  • Lloyd, I., and G. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153.

  • Madec, G., 2008: NEMO ocean engine. Institut Pierre-Simon Laplace Tech. Rep. Note du Pôle de Modelisation 27, 367 pp.

  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323.

    • Search Google Scholar
    • Export Citation
  • Neetu, S., M. Lengaigne, E. M. Vincent, J. Vialard, G. Madec, G. Samson, M. R. Ramesh Kumar, and F. Durand, 2012: Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. Res., doi:10.1029/2012JC008433, in press.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, L. Brodeau, G. Smith, B. Barnier, J. Molines, A. Treguier, and G. Madec, 2010: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6, 269284.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper-ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.

  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget, and observations. J. Phys. Oceanogr., 13, 949965.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260

  • Samson, G., H. Giordani, G. Caniaux, and F. Roux, 2009: Numerical investigation of an oceanic resonant regime induced by hurricane winds. Ocean Dyn., 59, 565586.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., 2000: Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci., 57, 31223130.

  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., R. L. Elsberry, and P. G. Black, 1989: Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649669.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. Black, A. Mariano, J. Hawkins, and R. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97 (C12), 20 227–20 248.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97 (C5), 73057316.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., C. A. Davis, and J. Fasullo, 2007: Water and energy budgets of hurricanes: Case studies of Ivan and Katrina. J. Geophys. Res., 112, D23106, doi:10.1029/2006JD008303.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., and P. Kållberg, 2004: Precipitation correction in the ERA-40 reanalyses. European Centre for Medium-Range Weather Forecasts, ERA-40 Project Report Series 13, 6 pp.

  • Tsai, Y., C. Chern, and J. Wang, 2008: The upper ocean response to a moving typhoon. J. Oceanogr., 64, 115130.

  • Verbrugge, N., and G. Garric, 2010: Large scale ECMWF radiative surface fluxes assessment, correction and application to 3D-global Ocean simulations. Proc. EGU General Assembly, Vienna, Austria, EGU, 12044.

  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. C. Jourdain, C. E. Menkes, and S. Jullien, 2012a: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res.,117, C02020, doi:10.1029/2011JC007396.

  • Vincent, E. M., M. Lengaigne, J. Vialard, G. Madec, N. C. Jourdain, and S. Masson, 2012b: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C05023, doi:10.1029/2011JC007705.

    • Search Google Scholar
    • Export Citation
  • Wentz, F., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 126 18
PDF Downloads 186 96 10

Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones

View More View Less
  • 1 Laboratoire des Ecoulements Géophysiques et Industriels, Centre National de la Recherche Scientifique, Grenoble, France
  • | 2 Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, CNRS/IRDN/UPMC/MNHN, Paris, France
  • | 3 National Institute of Oceanography, Goa, India
  • | 4 National Oceanographic Center, Southampton, United Kingdom
  • | 5 ** Institut de Recherche pour le Développement, Nouméa, New Caledonia
  • | 6 Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, Toulouse, France
Restricted access

Abstract

Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the “cold wake”). In this paper, the authors investigate the influence of cyclonic rainfall on the cold wake at a global scale over the 2002–09 period. For each cyclone, the cold wake intensity and accumulated rainfall are obtained from satellite data and precyclone oceanic stratification from the Global Eddy-Permitting Ocean Reanalysis (GLORYS2). The impact of precipitation on the cold wake is estimated by assuming that cooling is entirely due to vertical mixing and that an extra amount of energy (corresponding to the energy used to mix the rain layer into the ocean) would be available for mixing the ocean column in the hypothetical case with no rain. The positive buoyancy flux of rainfall reduces the mixed layer depth after the cyclone passage, hence reducing cold water entrainment. The resulting reduction in cold wake amplitude is generally small (median of 0.07 K for a median 1 K cold wake) but not negligible (>19% for 10% of the cases). Despite similar cyclonic rainfall, the effect of rain on the cold wake is strongest in the Arabian Sea and weak in the Bay of Bengal. An analytical approach with a linearly stratified ocean allows attributing this difference to the presence of barrier layers in the Bay of Bengal. The authors also show that the cold wake is generally a “salty wake” because entrainment of subsurface saltier water overwhelms the dilution effect of rainfall. Finally, rainfall temperature has a negligible influence on the cold wake.

Current affiliation: University of New South Wales, Sydney, New South Wales, Australia.

Corresponding author address: Nicolas C. Jourdain, CCRC, Mathews Building, Level 4, University of New South Wales, Sydney, NSW 2052, Australia. E-mail: nicolas_jourdain@yahoo.fr

Abstract

Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the “cold wake”). In this paper, the authors investigate the influence of cyclonic rainfall on the cold wake at a global scale over the 2002–09 period. For each cyclone, the cold wake intensity and accumulated rainfall are obtained from satellite data and precyclone oceanic stratification from the Global Eddy-Permitting Ocean Reanalysis (GLORYS2). The impact of precipitation on the cold wake is estimated by assuming that cooling is entirely due to vertical mixing and that an extra amount of energy (corresponding to the energy used to mix the rain layer into the ocean) would be available for mixing the ocean column in the hypothetical case with no rain. The positive buoyancy flux of rainfall reduces the mixed layer depth after the cyclone passage, hence reducing cold water entrainment. The resulting reduction in cold wake amplitude is generally small (median of 0.07 K for a median 1 K cold wake) but not negligible (>19% for 10% of the cases). Despite similar cyclonic rainfall, the effect of rain on the cold wake is strongest in the Arabian Sea and weak in the Bay of Bengal. An analytical approach with a linearly stratified ocean allows attributing this difference to the presence of barrier layers in the Bay of Bengal. The authors also show that the cold wake is generally a “salty wake” because entrainment of subsurface saltier water overwhelms the dilution effect of rainfall. Finally, rainfall temperature has a negligible influence on the cold wake.

Current affiliation: University of New South Wales, Sydney, New South Wales, Australia.

Corresponding author address: Nicolas C. Jourdain, CCRC, Mathews Building, Level 4, University of New South Wales, Sydney, NSW 2052, Australia. E-mail: nicolas_jourdain@yahoo.fr
Save