• Aagaard, K., 1989: A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Reun.-Cons. Int. Explor. Mer, 188, 1122.

  • Aagaard, K., , L. K. Coachman, , and E. C. Carmack, 1981: On the pycnocline of the Arctic Ocean. Deep-Sea Res., 28, 529545.

  • Andreas, E. L, , T. W. Horst, , A. A. Grachev, , P. O. G. Persson, , C. W. Fairall, , P. S. Guest, , and R. E. Jordan, 2010: Parameterizing turbulent exchange over summer sea ice and the marginal ice zone. Quart. J. Roy. Meteor. Soc., 136, 927943.

    • Search Google Scholar
    • Export Citation
  • Bourgain, P., , and J. C. Gascard, 2011: The Arctic Ocean halocline and its interannual variability from 1997 to 2008. Deep-Sea Res. I, 58, 745756, doi:10.1016/j.dsr.2011.05.001.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., , D. J. Cavalieri, , and T. Markus, 2003: Sea ice concentration, ice temperature, and snow depth, using AMSR-E data. IEEE Trans. Geosci. Remote Sens., 41 (2), 243252.

    • Search Google Scholar
    • Export Citation
  • EWG, 1997: Joint U.S.–Russian atlas of the Arctic Ocean. National Snow and Ice Data Center Environmental Working Group, CD-ROM.

  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett., 2, 148152.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., , E. C. Carmack, , F. A. McLaughlin, , S. E. Allen, , and R. G. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res., 115, C05021, doi:10.1029/2009JC005265.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., , S. E. Allen, , F. A. McLaughlin, , R. A. Woodgate, , and E. C. Carmack, 2011: Changes in near-surface waters in the Canada Basin, Arctic Ocean, from 1993 to 2009: A basin in transition. J. Geophys. Res., 116, C10008, doi:10.1029/2011JC007069.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , J. M. Toole, , and N. G. Larson, 2007: Sensor corrections for Sea-Bird SBE-41CP and SBE-41 CTDs. J. Atmos. Oceanic Technol., 24, 11171130.

    • Search Google Scholar
    • Export Citation
  • Krishfield, R., , J. Toole, , A. Proshutinsky, , and M.-L. Timmermans, 2008: Automated Ice-Tethered Profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 2091–2105.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., , and N. Untersteiner, 2011: The thinning of Arctic sea ice. Phys. Today, 64, 3641.

  • Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732–737, doi:10.1002/grl.50193.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature, 364, 701703.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., and Coauthors, 2009: Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Res. Lett., 36, L05601, doi:10.1029/2008GL036792.

    • Search Google Scholar
    • Export Citation
  • Lique, C., , and M. Steele, 2013: Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic basin? J. Geophys. Res., 117, C03026, doi:10.1029/2011JC007612.

    • Search Google Scholar
    • Export Citation
  • Markus, T., , and D. Cavalieri, 2000: An enhancement of the NASA team sea ice algorithm. IEEE Trans. Geosci. Remote Sens., 38, 13871398.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., 1990: Evolution of the Southern Ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J. Geophys. Res., 95 (C7), 11 64111 654.

    • Search Google Scholar
    • Export Citation
  • Maykut, G., , and M. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100 (C12), 24 691–24 703.

  • McLaughlin, F. A., , E. C. Carmack, , R. W. Macdonald, , H. Melling, , and J. H. Swift, 2004: On the juxtaposition of Atlantic and Pacific–origin waters in the Canada Basin, 1997-1998. Deep-Sea Res., 51, 107128.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, F. A., , E. C. Carmack, , W. J. Williams, , S. Zimmerman, , K. Shimada, , and M. Itoh, 2009: Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993-2007. J. Geophys. Res., 114, C00A12, doi:10.1029/2008JC005001.

    • Search Google Scholar
    • Export Citation
  • Monterey, G., , and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 96 pp.

  • Padman, L., 1995: Small-scale physical processes in the Arctic Ocean, Arctic Oceanography: Marginal Ice Zones and Continental Shelves, W. O. Smith and J. M. Grebmeier, Eds., Coastal and Estuarine Studies, Vol. 49, Amer. Geophys. Union, 97–129.

  • Padman, L., , and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92 (C10), 10 79910 806.

    • Search Google Scholar
    • Export Citation
  • Padman, L., , and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J. Geophys. Res., 96 (C3), 47694782.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183.

    • Search Google Scholar
    • Export Citation
  • Pfirman, S. L., , D. Bauch, , and T. Gammelsrod, 1994: The northern Barents Sea: Water mass distribution and modification. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 77–94.

  • Polyakov, I. V., , R. Kwok, , and J. E. Walsh, 2012a: Recent changes of arctic multiyear sea-ice coverage and their likely causes. Bull. Amer. Meteor. Soc., 93, 145151.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., , A. V. Pnyushkov, , R. Rember, , V. V. Ivanov, , Y.-D. Lenn, , L. Padman, , and E. C. Carmack, 2012b: Mooring-based observations of the double-diffusive staircases over the Laptev Sea slope. J. Phys. Oceanogr., 42, 95109.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35, L08606, doi:10.1029/2008GL033532.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and R. A. Woodgate, 2009: Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , C. M. Lee, , and R. A. Woodgate, 2011: Wind-driven mixing in the Arctic Ocean. Oceanography, 24, 137145.

  • Rudels, B., , E. P. Jones, , L. G. Anderson, , and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 33–46.

  • Rudels, B., , L. G. Anderson, , and E. P. Jones, 1996: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101 (C4), 88078821.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., , R. D. Muench, , B. Rudels, , and L. Timokhov, 1997: Impact of eastern Arctic shelf waters on the Nansen Basin intermediate layers. J. Geophys. Res., 102 (C2), 33713382.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., , H. Loeng, , B. Rudels, , V. K. Ozhigin, , and W. Dieck, 2002: Atlantic Water flow through the Barents and Kara Seas. Deep-Sea Res. I, 49, 22812298, doi:10.1016/S0967-0637(02)00125-5.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., , T. P. Stanton, , M. G. McPhee, , J. H. Morison, , and D. G. Martinson, 2009: Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA. J. Geophys. Res., 114, C06012, doi:10.1029/2008JC004991.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , S. Uppala, , D. Dee, , and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, Vol. 110, ECMWF, Reading, United Kingdom, 26–35.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., , and I. Fer, 2009: Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. J. Phys. Oceanogr., 39, 30493069.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , J. Morison, , W. Ermold, , I. Rigor, , M. Ortmeyer, , and K. Shimada, 2004: Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, doi:10.1029/2003JC002009.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , W. Ermold, , and J. Zhang, 2011: Modeling the formation and fate of the near-surface temperature maximum in the Canadian Basin of the Arctic Ocean. J. Geophys. Res., 116, C11015, doi:10.1029/2010JC006803.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., , J. Toole, , R. Krishfield, , and P. Winsor, 2008a: Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., , J. Toole, , A. Proshutinsky, , R. Krishfield, , and A. Plueddemann, 2008b: Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr., 38, 133145.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., , S. Cole, , and J. Toole, 2012: Horizontal density structure and restratification of the Arctic Ocean surface layer. J. Phys. Oceanogr., 42, 659668.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., , R. A. Krishfield, , M.-L. Timmermans, , and A. Proshutinsky, 2011: The Ice-Tethered Profiler: Argo of the Arctic. Oceanography, 24, 126135.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 12
PDF Downloads 83 83 8

Winter Convection Transports Atlantic Water Heat to the Surface Layer in the Eastern Arctic Ocean

View More View Less
  • 1 International Arctic Research Center, and College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 2 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 3 Earth & Space Research, Corvallis, Oregon
  • | 4 Fisheries and Oceans Canada, Sidney, British Columbia, Canada, and College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 5 ASL Environmental Sciences Inc., Victoria, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

A 1-yr (2009/10) record of temperature and salinity profiles from Ice-Tethered Profiler (ITP) buoys in the Eurasian Basin (EB) of the Arctic Ocean is used to quantify the flux of heat from the upper pycnocline to the surface mixed layer. The upper pycnocline in the central EB is fed by the upward flux of heat from the intermediate-depth (~150–900 m) Atlantic Water (AW) layer; this flux is estimated to be ~1 W m−2 averaged over one year. Release of heat from the upper pycnocline, through the cold halocline layer to the surface mixed layer is, however, seasonally intensified, occurring more strongly in winter. This seasonal heat loss averages ~3–4 W m−2 between January and April, reducing the rate of winter sea ice formation. This study hypothesizes that the winter heat loss is driven by mixing caused by a combination of brine-driven convection associated with sea ice formation and larger vertical velocity shear below the base of the surface mixed layer (SML), enhanced by atmospheric storms and the seasonal reduction in density difference between the SML and underlying pycnocline.

Earth & Space Research Publication Number 148.

Corresponding author address: Igor Polyakov, International Arctic Research Center, University of Alaska Fairbanks, P.O. Box 757335, Fairbanks, AK 99775. E-mail: igor@iarc.uaf.edu

Abstract

A 1-yr (2009/10) record of temperature and salinity profiles from Ice-Tethered Profiler (ITP) buoys in the Eurasian Basin (EB) of the Arctic Ocean is used to quantify the flux of heat from the upper pycnocline to the surface mixed layer. The upper pycnocline in the central EB is fed by the upward flux of heat from the intermediate-depth (~150–900 m) Atlantic Water (AW) layer; this flux is estimated to be ~1 W m−2 averaged over one year. Release of heat from the upper pycnocline, through the cold halocline layer to the surface mixed layer is, however, seasonally intensified, occurring more strongly in winter. This seasonal heat loss averages ~3–4 W m−2 between January and April, reducing the rate of winter sea ice formation. This study hypothesizes that the winter heat loss is driven by mixing caused by a combination of brine-driven convection associated with sea ice formation and larger vertical velocity shear below the base of the surface mixed layer (SML), enhanced by atmospheric storms and the seasonal reduction in density difference between the SML and underlying pycnocline.

Earth & Space Research Publication Number 148.

Corresponding author address: Igor Polyakov, International Arctic Research Center, University of Alaska Fairbanks, P.O. Box 757335, Fairbanks, AK 99775. E-mail: igor@iarc.uaf.edu
Save