• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the zonal mean acceleration. J. Atmos. Sci., 33, 20312048.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science,317, 935–938.

  • Cuny, J., , P. B. Rhines, , P. P. Niiler, , and S. Bacon, 2002: Labrador Sea boundary currents and the fate of the Irminger Sea water. J. Phys. Oceanogr., 32, 627647.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., , J. A. Church, , N. J. White, , P. J. Gleckler, , S. E. Wijffels, , P. M. Barker, , and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multidecadal sea level rise. Nature, 453, 10901093.

    • Search Google Scholar
    • Export Citation
  • Döös, K., , J. Nilsson, , J. Nycander, , L. Brodeau, , and M. Ballarotta, 2012: The World Ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , R. J. Greatbatch, , and D. Olbers, 2007: Interpreting eddy fluxes. J. Phys. Oceanogr., 37, 12821296.

  • England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. J. Phys. Oceanogr., 25, 27562777.

  • Ferrari, R., , and D. Ferreira, 2011: What processes drive the ocean heat transport. Ocean Modell., 38, 171186.

  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gerdes, R., , C. Köberle, , and J. Willebrand, 1991: The influence of numerical advection schemes on the results of ocean general circulation models. Climate Dyn., 5, 211226.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Fundamentals of Ocean Climate Models. Academic Press, 662 pp.

  • Gnanadesikan, A., , R. D. Slater, , P. S. Swathi, , and G. K. Vallis, 2005: The energetics of ocean heat transport. J. Climate, 18, 26042616.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Winton, , K. Takahashi, , T. Delworth, , F. Zeng, , and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Laliberté, F., , T. Shaw, , and O. Pauluis, 2012: Moist recirculation and water vapor transport on dry isentropes. J. Atmos. Sci., 69, 875890.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., , S. A. Josey, , A. J. G. de Nurser, , B. A. Cuevas, , and A. C. Coward, 2005: Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model. Ocean Sci., 1, 127144.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., , and P. C. McIntosh, 1996: The temporal-residual-mean velocity. Part I: Derivation and the scalar conservation equations. J. Phys. Oceanogr., 26, 26532665.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730.

  • Nurser, A. J. G., , and M.-M. Lee, 2004: Isopycnal averaging at constant height. Part I: The formulation and a case study. J. Phys. Oceanogr., 34, 27212739.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., , J. Nilsson, , K. Döös, , and G. Bromström, 2007: Thermodynamic analysis of ocean circulation. J. Phys. Oceanogr., 37, 20382052.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., 1995: MOM2 documentation users guide and reference manual. GFDL Ocean Group Tech. Rep. 3.2, 232 pp.

  • Pauluis, O., , A. Czaja, , and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 1075.

  • Pauluis, O., , T. Shaw, , and F. Laliberté, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 17661783.

    • Search Google Scholar
    • Export Citation
  • Sandström, J. W., 1908: Dynamische Versuche mit Meerwasser. Ann. Hydrogr. Martimen Meteor., 36, 623.

  • Sijp, W. P., , and M. H. England, 2009: Southern Hemisphere westerly wind control over the ocean's thermohaline circulation. J. Climate, 22, 12771286.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., , M. Bates, , and M. H. England, 2006: Can isopycnal mixing control the stability of the thermohaline circulation in ocean climate models? J. Climate, 19, 56375651.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stommel, H., , and A. B. Arons, 1960: On the abyssal circulation of the world's ocean–II. An idealized model of circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 140154.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42, 477500.

  • Weaver, A. J., and Coauthors, 2001: The UVIC earth system climate model: Model description, climatology, and applications to past, present, and future climates. Atmos.–Ocean, 39, 361428.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C., , P. Cessi, , J. McClean, , and M. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett.,35, L23605, doi:10.1029/2008GL036138.

  • Zika, J. D., , M. H. England, , and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 2, 708724.

  • Zika, J. D., and Coauthors, 2013: Vertical eddy fluxes in the Southern Ocean. J. Phys. Oceanogr., 43, 941–955.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 5
PDF Downloads 70 70 2

Vertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing

View More View Less
  • 1 ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia, and National Oceanography Centre, University of Southampton, Southampton, United Kingdom
  • | 2 ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

Vertical transport of heat by ocean circulation is investigated using a coupled climate model and novel thermodynamic methods. Using a streamfunction in temperature–depth coordinates, cells are identified by whether they are thermally direct (flux heat upward) or indirect (flux heat downward). These cells are then projected into geographical and other thermodynamic coordinates. Three cells are identified in the model: a thermally direct cell coincident with Antarctic Bottom Water, a thermally indirect deep cell coincident with the upper limb of the meridional overturning circulation, and a thermally direct shallow cell coincident with the subtropical gyres at the surface. The mechanisms maintaining the thermally indirect deep cell are investigated. Sinking water within the deep cell is more saline than that which upwells, because of the coupling between the upper limb and the subtropical gyres in a broader thermohaline circulation. Despite the higher salinity of its sinking water, the deep cell transports buoyancy downward, requiring a source of mechanical energy. Experiments run to steady state with increasing Southern Hemisphere westerlies show an increasing thermally indirect circulation. These results suggest that heat can be pumped downward by the upper limb of the meridional overturning circulation through a combination of salinity gain in the subtropics and the mechanical forcing provided by Southern Hemisphere westerly winds.

Corresponding author address: Jan D. Kika, University of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom. E-mail: J.D.Zika@soton.ac.uk

Abstract

Vertical transport of heat by ocean circulation is investigated using a coupled climate model and novel thermodynamic methods. Using a streamfunction in temperature–depth coordinates, cells are identified by whether they are thermally direct (flux heat upward) or indirect (flux heat downward). These cells are then projected into geographical and other thermodynamic coordinates. Three cells are identified in the model: a thermally direct cell coincident with Antarctic Bottom Water, a thermally indirect deep cell coincident with the upper limb of the meridional overturning circulation, and a thermally direct shallow cell coincident with the subtropical gyres at the surface. The mechanisms maintaining the thermally indirect deep cell are investigated. Sinking water within the deep cell is more saline than that which upwells, because of the coupling between the upper limb and the subtropical gyres in a broader thermohaline circulation. Despite the higher salinity of its sinking water, the deep cell transports buoyancy downward, requiring a source of mechanical energy. Experiments run to steady state with increasing Southern Hemisphere westerlies show an increasing thermally indirect circulation. These results suggest that heat can be pumped downward by the upper limb of the meridional overturning circulation through a combination of salinity gain in the subtropics and the mechanical forcing provided by Southern Hemisphere westerly winds.

Corresponding author address: Jan D. Kika, University of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom. E-mail: J.D.Zika@soton.ac.uk
Save