• Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Aoki, Y., , T. Suga, , and K. Hanawa, 2002: Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J. Phys. Oceanogr., 32, 22992311.

    • Search Google Scholar
    • Export Citation
  • Ascani, F., , E. Firing, , P. Dutrieux, , J. P. McCreary, , and A. Ishida, 2010: Deep equatorial ocean circulation induced by a forced-dissipated Yanai beam. J. Phys. Oceanogr., 40, 11181142.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Calil, P. H. R., , K. J. Richards, , Y. Jia, , and R. Bidigare, 2008: Eddy activity in the lee of the Hawaiian Islands. Deep-Sea Res., 55, 11791194, doi:10.1016/j.dsr2.2008.01.008.

    • Search Google Scholar
    • Export Citation
  • Cardona, Y., , and A. Bracco, 2012: Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea. Ocean Modell., 42, 115, doi:10.1016/j.ocemod.2011.11.004.

    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., , J. C. Ohlmann, , and P. P. Niiler, 2008: Permanent meanders in the California Current System. J. Phys. Oceanogr., 38, 16901710.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , and S. G. H. Philander, 1989: Rossby wave packets in baroclinic mean currents. Deep-Sea Res., 36, 1737, doi:10.1016/0198-0149(89)90016-2.

    • Search Google Scholar
    • Export Citation
  • Chavanne, C., , P. Flament, , R. Lumpkin, , B. Dousset, , and A. Bentamy, 2002: Scatterometer observations of wind variations induced by oceanic islands: Implications for wind-driven ocean circulation. Can. J. Remote Sens., 28, 466474.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , R. A. deSzoeke, , M. G. Schlax, , K. El Naggar, , and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , M. H. Freilich, , and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P., , and K.-A. Park, 2001: Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28, 575578.

  • Couvelard, X., , P. Marchesiello, , L. Gourdeau, , and J. Lefèvre, 2008: Barotropic zonal jets induced by islands in the southwest Pacific. J. Phys. Oceanogr., 38, 21852204.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., , W. S. Kessler, , and F. Marin, 2012: Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J. Phys. Oceanogr., 42, 14751485.

    • Search Google Scholar
    • Export Citation
  • Davey, M. K., , and P. D. Killworth, 1989: Flows produced by discrete sources of buoyancy. J. Phys. Oceanogr., 19, 12791290.

  • Haidvogel, D. B., , and P. B. Rhines, 1983: Waves and circulation driven by oscillatory winds in an idealized ocean basin. Geophys. Astrophys. Fluid Dyn., 25, 163.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 35953624.

    • Search Google Scholar
    • Export Citation
  • Holland, C. L., , and G. T. Mitchum, 2001: Propagation of Big Island eddies. J. Geophys. Res., 106 (C1), 935944.

  • Hristova, H. G., , J. Pedlosky, , and M. A. Spall, 2008: Radiating instability of a meridional boundary current. J. Phys. Oceanogr., 38, 22942307.

    • Search Google Scholar
    • Export Citation
  • Jia, Y., and Coauthors, 2011: Generation of mesoscale eddies in the lee of the Hawaiian Islands. J. Geophys. Res., 116, C11009, doi:10.1029/2011JC007305.

    • Search Google Scholar
    • Export Citation
  • Jiménez, B., , P. Sangrà, , and E. Mason, 2008: A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands. Ocean Modell., 22, 146157, doi:10.1016/j.ocemod.2008.02.004.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kelly, K. A., , S. Dickinson, , M. J. McPhaden, , and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 2469–2472.

    • Search Google Scholar
    • Export Citation
  • Kersalé, M., , A. M. Doglioli, , and A. A. Petrenko, 2011: Sensitivity study of the generation of mesoscale eddies in a numerical model of Hawaii islands. Ocean Sci., 7, 277291, doi:10.5194/os-7-277-2011.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., , G. C. Johnson, , and D. W. Moore, 2003: Sverdrup and nonlinear dynamics of the Pacific equatorial currents. J. Phys. Oceanogr., 33, 9941008.

    • Search Google Scholar
    • Export Citation
  • Kida, S., , J. F. Price, , and J. Yang, 2008: The upper-oceanic response to overflows: A mechanism for the Azores Current. J. Phys. Oceanogr., 38, 880895.

    • Search Google Scholar
    • Export Citation
  • Kida, S., , J. Yang, , and J. F. Price, 2009: Marginal sea overflows and the upper ocean interaction. J. Phys. Oceanogr., 39, 387403.

  • Kobashi, F., , and H. Kawamura, 2002: Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J. Geophys. Res., 107, 3185, doi:10.1029/2001JC001225.

    • Search Google Scholar
    • Export Citation
  • Large, W., , J. C. McWilliams, , and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Lebedev, K., , H. Yoshinari, , N. A. Maximenko, , and P. W. Hacker, 2007: YoMaHa′07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4(2), 16 pp. [Available online at http://apdrc.soest.hawaii.edu/projects/yomaha/.]

  • Liu, Q., , S. Wang, , Q. Wang, , and W. Wang, 2003: On the formation of Subtropical Countercurrent to the west of the Hawaiian Islands. J. Geophys. Res., 108, 3167, doi:10.1029/2002JC001366.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., , A. V. Mishonov, , J. I. Antonov, , T. P. Boyer, , H. E. Garcia, , O. K. Baranova, , M. M. Zweng, , and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Lumpkin, R., , and P. J. Flament, 2013: Extent and energetics of the Hawaiian Lee Countercurrent. Oceanography, 26, 5865, doi:10.5670/oceanog.2013.05.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., , J. Pedlosky, , and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309.

  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., , B. Bang, , and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., , O. V. Melnichenko, , P. P. Niiler, , and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, doi:10.1029/2008GL033267.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the Equatorial Undercurrent. Philos. Trans. Roy. Soc. London, A298, 603635.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and Coauthors, 2007: Interactions between the Indonesian throughflow and circulations in the Indian and Pacific Oceans. Prog. Oceanogr., 75, 70114.

    • Search Google Scholar
    • Export Citation
  • Melnichenko, O. V., , N. A. Maximenko, , N. Schneider, , and H. Sasaki, 2010: Quasi-stationary striations in basin-scale oceanic circulation: Vorticity balance from observations and eddy-resolving model. Ocean Dyn., 60, 653666.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., , A. S. Sybrandy, , K. Bi, , P. M. Poulain, , and D. Bitterman, 1995: Measurements of water-following characteristics of Tristar and Holey-sock drifters. Deep-Sea Res., 42, 19511964.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., , E. P. Chassignet, , and C. G. H. Rooth, 2001: On the connection between the Mediterranean outflow and the Azores Current. J. Phys. Oceanogr., 31, 461480.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer-Verlag, Berlin, 453 pp.

  • Qiu, B., , and T. S. Durland, 2002: Interaction between an island and the ventilated thermocline: Implications for the Hawaiian Lee Countercurrent. J. Phys. Oceanogr., 32, 34083426.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , D. A. Koh, , C. Lumpkin, , and P. Flament, 1997: Existence and formation mechanism of the North Hawaiian Ridge Current. J. Phys. Oceanogr., 27, 431444.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1994: Jets. Chaos, 4, 313339.

  • Rhines, P. B., , and W. R. Young, 1982: A theory of wind-driven circulation. I. Mid-ocean gyres. J. Mar. Res., 40, 559596.

  • Sasaki, H., , and M. Nonaka, 2006: Far-reaching Hawaiian Lee Countercurrent driven by wind-stress curl induced by warm SST band along the current. Geophys. Res. Lett., 33, L13602, doi:10.1029/2006GL026540.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., , S.-P. Xie, , B. Taguchi, , M. Nonaka, , and Y. Masumoto, 2010: Seasonal variations of the Hawaiian Lee Countercurrent induced by the meridional migration of the trade winds. Ocean Dyn., 60, 705715, doi:10.1007/s10236-009-0258-6.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319.

  • Spall, M. A., 2000: Buoyancy-forced circulations around islands and ridges. J. Mar. Res., 58, 957982.

  • Stommel, H. M., 1982: Is the South Pacific helium-3 plume dynamically active? Earth Planet. Sci. Lett., 61, 6367.

  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean, with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326.

    • Search Google Scholar
    • Export Citation
  • Walker, A., , and J. Pedlosky, 2002: On the instability of meridional baroclinic currents. J. Phys. Oceanogr., 32, 10751093.

  • Wang, J., , M. A. Spall, , G. R. Flierl, , and P. Malanotte-Rizzoli, 2012: A new mechanism for the generation of quasi-zonal jets in the ocean. Geophys. Res. Lett., 39, L10601, doi:10.1029/2012GL051861.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., , and S. R. Jayne, 2012: Eddy-driven recirculations from a localized transient forcing. J. Phys. Oceanogr., 42, 430447.

  • Xie, S.-P., , W. T. Liu, , Q. Liu, , and M. Nonaka, 2001: Far-reaching effects of the Hawaiian Islands on the Pacific ocean-atmosphere system. Science, 292, 20572060.

    • Search Google Scholar
    • Export Citation
  • Yoshida, S., , B. Qiu, , and P. Hacker, 2010: Wind-generated eddy characteristics in the lee of the island of Hawaii. J. Geophys. Res., 115, C03019, doi:10.1029/2009JC005417.

    • Search Google Scholar
    • Export Citation
  • Yoshida, S., , B. Qiu, , and P. Hacker, 2011: Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: Observations and connection to the Pacific decadal oscillation. J. Geophys. Res., 116, C12009, doi:10.1029/2011JC007286.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., , N. Maximenko, , S.-P. Xie, , and M. Nonaka, 2003: On the termination of the Hawaiian Lee Countercurrent. Geophys. Res. Lett., 30, 1215, doi:10.1029/2002GL016710.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 3
PDF Downloads 13 13 3

Linear Wind-Forced Beta Plumes with Application to the Hawaiian Lee Countercurrent

View More View Less
  • 1 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii, and Department of Geophysics, Faculty of Physical and Mathematical Sciences, Universidad de Concepción, Concepción, Chile
  • | 2 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii
  • | 3 International Pacific Research Center, and Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii
  • | 4 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
© Get Permissions
Restricted access

Abstract

Two numerical ocean models are used to study the baroclinic response to forcing by localized wind stress curl (i.e., a wind-forced β plume, which is a circulation cell developing to the west of the source region and composed of a set of zonal jets) with implications for the Hawaiian Lee Countercurrent (HLCC): an idealized primitive equation model [Regional Ocean Modeling System (ROMS)], and a global, eddy-resolving, general circulation model [Ocean General Circulation Model for the Earth Simulator (OFES)]. In addition, theoretical ideas inferred from a linear continuously stratified model are used to interpret results. In ROMS, vertical mixing preferentially damps higher-order vertical modes. The damping thickens the plume to the west of the forcing region, weakening the near-surface zonal jets and generating deeper zonal currents. The zonal damping scale increases monotonically with the meridional forcing scale, indicating a dominant role of vertical viscosity over diffusion, a consequence of the small forcing scale. In the OFES run forced by NCEP reanalysis winds, the HLCC has a vertical structure consistent with that of idealized β plumes simulated by ROMS, once the contribution of the North Equatorial Current (NEC) has been removed. Without this filtering, a deep HLCC branch appears artificially separated from the surface branch by the large-scale intermediate-depth NEC. The surface HLCC in two different OFES runs exhibits sensitivity to the meridional wind curl scale that agrees with the dynamics of a β plume in the presence of vertical viscosity. The existence of a deep HLCC extension is also suggested by velocities of Argo floats.

International Pacific Research Center/School of Ocean and Earth Science and Technology Publication Number 990/8955.

Corresponding author address: Ali Belmadani, DGEO, FCFM, Universidad de Concepción, Avda. Esteban Iturra s/n - Barrio Universitario, Casilla 160-C, Concepción, Chile. E-mail: abelmadani@dgeo.udec.cl

Abstract

Two numerical ocean models are used to study the baroclinic response to forcing by localized wind stress curl (i.e., a wind-forced β plume, which is a circulation cell developing to the west of the source region and composed of a set of zonal jets) with implications for the Hawaiian Lee Countercurrent (HLCC): an idealized primitive equation model [Regional Ocean Modeling System (ROMS)], and a global, eddy-resolving, general circulation model [Ocean General Circulation Model for the Earth Simulator (OFES)]. In addition, theoretical ideas inferred from a linear continuously stratified model are used to interpret results. In ROMS, vertical mixing preferentially damps higher-order vertical modes. The damping thickens the plume to the west of the forcing region, weakening the near-surface zonal jets and generating deeper zonal currents. The zonal damping scale increases monotonically with the meridional forcing scale, indicating a dominant role of vertical viscosity over diffusion, a consequence of the small forcing scale. In the OFES run forced by NCEP reanalysis winds, the HLCC has a vertical structure consistent with that of idealized β plumes simulated by ROMS, once the contribution of the North Equatorial Current (NEC) has been removed. Without this filtering, a deep HLCC branch appears artificially separated from the surface branch by the large-scale intermediate-depth NEC. The surface HLCC in two different OFES runs exhibits sensitivity to the meridional wind curl scale that agrees with the dynamics of a β plume in the presence of vertical viscosity. The existence of a deep HLCC extension is also suggested by velocities of Argo floats.

International Pacific Research Center/School of Ocean and Earth Science and Technology Publication Number 990/8955.

Corresponding author address: Ali Belmadani, DGEO, FCFM, Universidad de Concepción, Avda. Esteban Iturra s/n - Barrio Universitario, Casilla 160-C, Concepción, Chile. E-mail: abelmadani@dgeo.udec.cl
Save