• Ambar, I., , N. Serra, , F. Neves, , and T. Ferreira, 2008: Observations of the Mediterranean Undercurrent and eddies in the Gulf of Cadiz during 2001. J. Mar. Syst., 71, 195220.

    • Search Google Scholar
    • Export Citation
  • Armi, L., , D. Hebert, , N. Oakey, , J. F. Price, , P. L. Richardson, , H. T. Rossby, , and B. Ruddick, 1989: Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354370.

    • Search Google Scholar
    • Export Citation
  • Auad, G., , D. Roemmich, , and J. Gilson, 2011: The California Current System in relation to the northeast Pacific Ocean circulation. Prog. Oceanogr., 91, 576592.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , and B. M. Hickey, 1984: Application of remote wind-forced coastal trapped wave theory to the Oregon and Washington coasts. J. Phys. Oceanogr., 14, 887903.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , L. Armi, , and I. Ambar, 1997: Lagrangian observations of Meddy formation during a Mediterranean Undercurrent seeding experiment. J. Phys. Oceanogr., 27, 25452575.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., , R. M. Hendry, , D. E. Amrhein, , and J. M. Lilly, 2012: Direct observations of formation and propagation of subpolar eddies into the subtropical North Atlantic. Deep-Sea Res. II.

    • Search Google Scholar
    • Export Citation
  • Bracewell, R. N., 1978: The Fourier Transform and its Applications. 2nd ed. McGraw-Hill, 444 pp.

  • Bretherton, F., , R. Davis, , and C. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23, 559582.

    • Search Google Scholar
    • Export Citation
  • Capet, X., , J. C. McWilliams, , M. J. Molemaker, , and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943.

    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., , and M.-L. Timmermans, 2012: Deep mesoscale eddies in the Canada Basin, Arctic Ocean. Geophys. Res. Lett., 39, L20602, doi:10.1029/2012GL053025.

    • Search Google Scholar
    • Export Citation
  • Carton, X., , L. Chérubin, , J. Paillet, , Y. Morel, , A. Serpette, , and B. Le Cann, 2002: Meddy coupling with a deep cyclone in the Gulf of Cadiz. J. Mar. Syst., 32, 1342.

    • Search Google Scholar
    • Export Citation
  • Castro, C. G., , F. P. Chavez, , and C. A. Collins, 2001: Role of the California Undercurrent in the export of denitrified waters from the eastern tropical North Pacific. Global Biogeochem. Cycles, 15, 819830.

    • Search Google Scholar
    • Export Citation
  • Checkley, D. M., Jr., , and J. A. Barth, 2009: Patterns and processes in the California Current System. Prog. Oceanogr., 83, 4964.

  • Chelton, D. B., , M. G. Schlax, , and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., , M. Y. Morris, , P. P. Niiler, , P. M. Kosro, , R. L. Smith, , S. R. Ramp, , C. A. Collins, , and D. L. Musgrave, 2000: Spatial and temporal characteristics of the mesoscale circulation of the California Current from eddy-resolving moored and shipboard measurements. J. Geophys. Res., 105 (C1), 12451269.

    • Search Google Scholar
    • Export Citation
  • Colas, F., , J. C. McWilliams, , X. Capet, , and J. Kurian, 2012: Heat balance and eddies in the Peru–Chile current system. Climate Dyn., 39, 509529.

    • Search Google Scholar
    • Export Citation
  • Collins, C. A., , N. Garfield, , R. G. Paquette, , and E. Carter, 1996: Lagrangian measurement of subsurface poleward flow between 38°N and 43°N along the West Coast of the United States during summer, 1993. Geophys. Res. Lett., 23, 24612464.

    • Search Google Scholar
    • Export Citation
  • Collins, C. A., , N. Garfield, , T. A. Rago, , F. W. Rischmiller, , and E. Carter, 2000: Mean structure of the inshore countercurrent and California Undercurrent off Point Sur, California. Deep-Sea Res. II, 47, 765782.

    • Search Google Scholar
    • Export Citation
  • Collins, C. A., , L. M. Ivanov, , and O. V. Melnichenko, 2003: Seasonal variability of the California Undercurrent: Statistical analysis based on the trajectories of floats with neutral buoyancy. Phys. Oceanogr., 13, 135147.

    • Search Google Scholar
    • Export Citation
  • Collins, C. A., , L. M. Ivanov, , O. V. Melnichenko, , and N. Garfield, 2004: California Undercurrent variability and eddy transport estimated from RAFOS float observations. J. Geophys. Res., 109, C05028, doi:10.1029/2003JC002191.

    • Search Google Scholar
    • Export Citation
  • Collins, C. A., , T. Margolina, , T. A. Rago, , and L. Ivanov, 2013: Looping RAFOS floats in the California Current System. Deep-Sea Res. II, 85, 42–61.

    • Search Google Scholar
    • Export Citation
  • Cornuelle, B. D., , T. K. Chereskin, , P. P. Niiler, , M. Y. Morris, , and D. L. Musgrave, 2000: Observations and modeling of a California Undercurrent eddy. J. Geophys. Res., 105 (C1), 12271243.

    • Search Google Scholar
    • Export Citation
  • Crawford, W. R., , P. J. Brickley, , T. D. Peterson, , and A. C. Thomas, 2005: Impact of Haida eddies on chlorophyll distribution in the eastern Gulf of Alaska. Deep-Sea Res. II, 52, 975989.

    • Search Google Scholar
    • Export Citation
  • Crawford, W. R., , P. J. Brickley, , and A. C. Thomas, 2007: Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska. Prog. Oceanogr., 75, 287303.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • D'Asaro, E. A., 1988a: Observations of small eddies in the Beaufort Sea. J. Geophys. Res., 93 (C6), 66696684.

  • D'Asaro, E. A., 1988b: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93 (C6), 66856693.

  • Davis, R. E., , M. D. Ohman, , D. L. Rudnick, , J. T. Sherman, , and B. Hodges, 2008: Glider surveillance of physics and biology in the southern California Current System. Limnol. Oceanogr., 53, 21512168.

    • Search Google Scholar
    • Export Citation
  • Devroye, L., 1986: Non-Uniform Random Variate Generation. Springer-Verlag, 843 pp.

  • Dewar, W. K., , and H. Meng, 1995: The propagation of submesoscale coherent vortices. J. Phys. Oceanogr., 25, 17451770.

  • Ebbesmeyer, C. C., , B. A. Taft, , J. C. McWilliams, , C. Y. Shen, , S. C. Riser, , H. T. Rossby, , P. E. Biscaye, , and H. G. Östlund, 1986: Detection, structure, and origin of extreme anomalies in a western Atlantic oceanographic section. J. Phys. Oceanogr., 16, 591612.

    • Search Google Scholar
    • Export Citation
  • Elliott, B. A., , and T. B. Sanford, 1986: The subthermocline lens D1. Part II: Kinematics and dynamics. J. Phys. Oceanogr., 16, 549561.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., , T. J. Osse, , R. D. Light, , T. Wen, , T. W. Lehman, , P. L. Sabin, , J. W. Ballard, , and A. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436.

    • Search Google Scholar
    • Export Citation
  • Flament, P., 2002: A state variable for characterizing water masses and their diffusive stability: Spiciness. Prog. Oceanogr., 54, 493501.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., , C. C. Eriksen, , P. B. Rhines, , and R. R. Harcourt, 2011: Determining vertical water velocities from Seaglider. J. Atmos. Oceanic Technol., 28, 16411656.

    • Search Google Scholar
    • Export Citation
  • Freeland, H., 2002: The heat flux across line-P 1996–1999. Atmos.–Ocean, 40, 8189.

  • Freeland, H., 2007: A short history of Ocean Station Papa and Line P. Prog. Oceanogr., 75, 120125.

  • Garfield, N., , C. A. Collins, , R. G. Paquette, , and E. Carter, 1999: Lagrangian exploration of the California Undercurrent, 1992–1995. J. Phys. Oceanogr., 29, 560583.

    • Search Google Scholar
    • Export Citation
  • Garfield, N., , M. E. Maltrud, , C. A. Collins, , T. A. Rago, , and R. G. Paquette, 2001: Lagrangian flow in the California Undercurrent, an observation and model comparison. J. Mar. Syst., 29, 201220.

    • Search Google Scholar
    • Export Citation
  • Gay, P. S., , and T. K. Chereskin, 2009: Mean structure and seasonal variability of the poleward undercurrent off southern California. J. Geophys. Res., 114, C02007, doi:10.1029/2008JC004886.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., , and P. F. Linden, 1981: The stability of vortices in a rotating, stratified fluid. J. Fluid Mech., 105, 283316.

  • Hátún, H., , C. C. Eriksen, , and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., , N. Oakey, , and B. Ruddick, 1990: Evolution of a Mediterranean salt lens: Scalar properties. J. Phys. Oceanogr., 20, 14681483.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current System—Hypotheses and facts. Prog. Oceanogr., 8, 191279.

  • Hickey, B. M., 1989: Patterns and processes of circulation over the Washington continental shelf and slope. Coastal Oceanography of Washington and Oregon, M. Landry and B. Hickey, Eds., Elsevier, 41–115.

  • Hickey, B. M., 1995: Coastal submarine canyons. Topographic Interactions in the Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 95–110.

  • Hickey, B. M., 1998: Coastal oceanography of western North America from the tip of Baja to Vancouver Island. The Sea, A. Robinson and K. Brink, Eds., The Global Coastal Ocean: Regional Studies and Syntheses, Vol. 11, Wiley and Sons, 345–393.

  • Huyer, A., , R. L. Smith, , and B. M. Hickey, 1984: Observations of a warm-core eddy off Oregon, January to March 1978. Deep-Sea Res., 31, 97117.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., , P. M. Kosro, , and S. J. Lentz, 1989: Poleward flow in the California Current System. Poleward Flows Along Eastern Ocean Boundaries, S. J. Neshyba, et al., Eds., Coastal and Estuarine Studies, Vol. 34, Springer-Verlag, 144–159.

  • Huyer, A., , J. A. Barth, , P. M. Kosro, , R. K. Shearman, , and R. L. Smith, 1998: Upper-ocean water mass characteristics of the California Current, summer 1993. Deep-Sea Res. II, 45, 14111442.

    • Search Google Scholar
    • Export Citation
  • Jerónimo, G., , and J. Gómez-Valdés, 2007: A subsurface warm-eddy off northern Baja California in July 2004. Geophys. Res. Lett., 34, L06610, doi:10.1029/2006GL028851.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , and K. E. McTaggart, 2010: Equatorial Pacific 13°C water eddies in the eastern subtropical South Pacific Ocean. J. Phys. Oceanogr., 40, 226236.

    • Search Google Scholar
    • Export Citation
  • Johnson, W. K., , L. A. Miller, , N. E. Sutherland, , and C. S. Wong, 2005: Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep-Sea Res. II, 52, 933953.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1977: A note on the lateral mixing of water masses. J. Phys. Oceanogr., 7, 626629.

  • Kosro, P. M., 2002: A poleward jet and an equatorward undercurrent observed off Oregon and northern California, during the 1997–98 El Niño. Prog. Oceanogr., 54, 343360.

    • Search Google Scholar
    • Export Citation
  • Kosro, P. M., and Coauthors, 1991: The structure of the transition zone between coastal waters and the open ocean off Northern California, winter and spring 1987. J. Geophys. Res., 96 (C8), 14 70714 730.

    • Search Google Scholar
    • Export Citation
  • Kurian, J., , F. Colas, , X. Capet, , J. C. McWilliams, , and D. B. Chelton, 2011: Eddy properties in the California Current System. J. Geophys. Res., 116, C08027, doi:10.1029/2010JC006895.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., , W. R. Crawford, , C. E. Harpold, , W. K. Johnson, , N. B. Kachel, , P. J. Stabeno, , and F. Whitney, 2009: A synoptic survey of young mesoscale eddies in the Eastern Gulf of Alaska. Deep-Sea Res. II, 56, 24602473.

    • Search Google Scholar
    • Export Citation
  • Lam, P. J., , J. K. B. Bishop, , C. C. Henning, , M. A. Marcus, , G. A. Waychunas, , and I. Y. Fung, 2006: Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Global Biogeochem. Cycles, 20, GB1006, doi:10.1029/2005GB002557.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., , and J. H. Trowbridge, 1991: The bottom boundary layer over the northern California shelf. J. Phys. Oceanogr., 21, 11861201.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P., 1990: A method for optimal analysis of fields with spatially variable mean. J. Geophys. Res., 95, 13 54313 547.

  • Lilliefors, H. W., 1967: On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc., 62, 399402.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., , and F. Santiago-Mandujano, 2001: Extreme water mass anomaly observed in the Hawaii Ocean time-series. Geophys. Res. Lett., 28, 29312934.

    • Search Google Scholar
    • Export Citation
  • Lynn, R. J., , and J. J. Simpson, 1987: The California Current System: The seasonal variability of its physical characteristics. J. Geophys. Res., 92 (C12), 12 94712 966.

    • Search Google Scholar
    • Export Citation
  • MacFadyen, A., , B. M. Hickey, , and W. P. Cochlan, 2008: Influences of the Juan de Fuca Eddy on circulation, nutrients, and phytoplankton production in the northern California Current System. J. Geophys. Res., 113, C08008, doi:10.1029/2007JC004412.

    • Search Google Scholar
    • Export Citation
  • Mackas, D. L., , K. L. Denman, , and A. F. Bennett, 1987: Least squares multiple tracer analysis of water mass composition. J. Geophys. Res., 92 (C3), 29072918.

    • Search Google Scholar
    • Export Citation
  • Margolina, T., , C. A. Collins, , T. A. Rago, , R. G. Paquette, , and N. Garfield, 2006: Intermediate level Lagrangian subsurface measurements in the northeast Pacific: Isobaric RAFOS float data. Geochem. Geophys. Geosyst., 7, Q09002, doi:10.1029/2006GC001295.

    • Search Google Scholar
    • Export Citation
  • Martin, J. P., , C. M. Lee, , C. C. Eriksen, , C. Ladd, , and N. B. Kachel, 2009: Glider observations of kinematics in a Gulf of Alaska eddy. J. Geophys. Res., 114, C12021, doi:10.1029/2008JC005231.

    • Search Google Scholar
    • Export Citation
  • Masson, D., 2006: Seasonal water mass analysis for the straits of Juan de Fuca and Georgia. Atmos.–Ocean, 44, 115.

  • McCreary, J. P., 1981: A linear stratified ocean model of the coastal undercurrent. Philos. Trans. Roy. Soc. London, A302, 385413.

  • McCreary, J. P., , P. J. Kundu, , and S.-Y. Chao, 1987: On the dynamics of the California Current system. J. Mar. Res., 45, 132.

  • McIntosh, P. C., 1990: Oceanographic data interpolation: Objective analysis and splines. J. Geophys. Res., 95 (C8), 13 52913 541.

  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182.

  • McWilliams, J. C., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 249 pp.

  • McWilliams, J. C., , and P. R. Gent, 1986: The evolution of sub-mesoscale, coherent vortices on the beta plane. Geophys. Astrophys. Fluid Dyn., 35 (1–4), 235255.

    • Search Google Scholar
    • Export Citation
  • Meschanov, S. L., , and G. I. Shapiro, 1998: A young lens of Red Sea water in the Arabian Sea. Deep-Sea Res. I, 45, 113.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Nicholson, D., , S. Emerson, , and C. C. Eriksen, 2008: Net community production in the deep euphotic zone of the subtropical North Pacific gyre from glider surveys. Limnol. Oceanogr., 53, 22262236.

    • Search Google Scholar
    • Export Citation
  • Okkonen, S. R., , T. J. Weingartner, , S. L. Danielson, , D. L. Musgrave, , and G. M. Schmidt, 2003: Satellite and hydrographic observations of eddy-induced shelf–slope exchange in the northwestern Gulf of Alaska. J. Geophys. Res., 108, 3033, doi:10.1029/2002JC001342.

    • Search Google Scholar
    • Export Citation
  • Perry, M. J., , B. S. Sackmann, , C. C. Eriksen, , and C. M. Lee, 2008: Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington Coast. Limnol. Oceanogr., 53, 21692179.

    • Search Google Scholar
    • Export Citation
  • Pierce, S. D., , R. L. Smith, , P. M. Kosro, , J. A. Barth, , and C. D. Wilson, 2000: Continuity of the poleward undercurrent along the eastern boundary of the mid-latitude North Pacific. Deep-Sea Res. II, 47, 811829.

    • Search Google Scholar
    • Export Citation
  • Prater, M. D., , and T. B. Sanford, 1994: A Meddy off Cape St. Vincent. Part I: Description. J. Phys. Oceanogr., 24, 15721586.

  • Richardson, P. L., , M. S. McCartney, , and C. Malliard, 1991: A search for Meddies in historical data. Dyn. Atmos. Oceans, 15, 241265.

  • Richardson, P. L., , A. S. Bower, , and W. Zenk, 2000: A census of Meddies tracked by floats. Prog. Oceanogr., 45, 209250.

  • Riser, S. C., , W. B. Owens, , H. T. Rossby, , and C. C. Ebbesmeyer, 1986: The structure, dynamics, and origin of a small-scale lens of water in the western North Atlantic thermocline. J. Phys. Oceanogr., 16, 572590.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., , and D. Hebert, 1988: The mixing of Meddy “Sharon.” Small-Scale Mixing and Turbulence in the Ocean, Elsevier Oceanography Series, Vol. 46, 249–261.

  • Ruddick, B. R., , and K. Richards, 2003: Oceanic thermohaline intrusions: Observations. Prog. Oceanogr., 56, 499527.

  • Rudnick, D. L., , and S. T. Cole, 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, doi:10.1029/2010JC006849.

    • Search Google Scholar
    • Export Citation
  • Schultz Tokos, K., , and T. Rossby, 1991: Kinematics and dynamics of a Mediterranean salt lens. J. Phys. Oceanogr., 21, 879892.

  • Siedlecki, S. A., , A. Mahadevan, , and D. E. Archer, 2012: Mechanism for export of sediment-derived iron in an upwelling regime. Geophys. Res. Lett., 7, Q09002,doi:10.1029/2006GC001295.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., , and R. J. Lynn, 1990: A mesoscale eddy dipole in the offshore California Current. J. Geophys. Res., 95 (C8), 13 00913 022.

    • Search Google Scholar
    • Export Citation
  • Strub, P., , and C. James, 2000: Altimeter-derived variability of surface velocities in the California Current System: 2. Seasonal circulation and eddy statistics. Deep-Sea Res. II, 47, 831870.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1988: Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr., 18, 89106.

  • Thomson, R. E., , and M. V. Krassovski, 2010: Poleward reach of the California Undercurrent extension. J. Geophys. Res., 115, C09027, doi:10.1029/2010JC006280.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., , D. L. Rudnick, , and R. E. Davis, 2009: Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. J. Geophys. Res., 114, C06001, doi:10.1029/2008JC005086.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., , D. L. Rudnick, , M. R. Mazloff, , R. E. Davis, , and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., , D. L. Rudnick, , M. R. Mazloff, , B. D. Cornuelle, , and R. E. Davis, 2012: Thermohaline structure in the California Current System: Observations and modeling of spice variance. J. Geophys. Res., 117, C02008, doi:10.1029/2011JC007589.

    • Search Google Scholar
    • Export Citation
  • van Ballegooyen, R. C., , M. L. Gründlingh, , and J. R. E. Lutjeharms, 1994: Eddy fluxes of heat and salt from the southwest Indian Ocean into the southeast Atlantic Ocean: A case study. J. Geophys. Res., 99 (C7), 14 05314 070.

    • Search Google Scholar
    • Export Citation
  • Welch, B. L., 1947: The generalization of ‘Student's' problem when several different population variances are involved. Biometrika, 34 (1/2), 2835.

    • Search Google Scholar
    • Export Citation
  • Werner, F. E., , and B. M. Hickey, 1984: The role of a longshore pressure gradient in Pacific Northwest coastal dynamics. J. Phys. Oceanogr., 13, 395410.

    • Search Google Scholar
    • Export Citation
  • Whitney, F. A., , and H. J. Freeland, 1999: Variability in upper-ocean water properties in the NE Pacific Ocean. Deep-Sea Res. II, 46, 23512370.

    • Search Google Scholar
    • Export Citation
  • Whitney, F. A., , and M. Robert, 2002: Structure of Haida eddies and their transport of nutrient from coastal margins into the NE Pacific Ocean. Deep-Sea Res. II, 58, 715723.

    • Search Google Scholar
    • Export Citation
  • Whitney, F. A., , W. R. Crawford, , and P. J. Harrison, 2005: Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE Pacific. Deep-Sea Res. II, 52 (5–6), 681706.

    • Search Google Scholar
    • Export Citation
  • Xiu, P., , A. P. Palacz, , F. Chai, , E. G. Roy, , and M. L. Wells, 2011: Iron flux induced by Haida eddies in the Gulf of Alaska. Geophys. Res. Lett., 38, L13607, doi:10.1029/2011GL047946.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., , and R. Lueck, 1987: Turbulence in the California Undercurrent. J. Phys. Oceanogr., 17, 13781396.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 117 13
PDF Downloads 47 47 3

Subthermocline Eddies over the Washington Continental Slope as Observed by Seagliders, 2003–09

View More View Less
  • 1 School of Oceanography, University of Washington, Seattle, Washington
  • | 2 Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

In the California Current System, subthermocline, lenslike anticyclonic eddies generated within the California Undercurrent (CU) are one mechanism for lateral transport of the warm, saline waters of the CU. Garfield et al. established the name “Cuddies” for eddies of this type and hypothesized that they account for a significant fraction of the offshore transport of CU water. This study presents observations of subthermocline eddies collected from a time series of Seaglider surveys in the northern California Current System. Gliders made 46 crossings of subthermocline anticyclones and 17 crossings of subthermocline cyclones over 5.5 yr. Close inspection grouped these into 20 distinct anticyclones and 10 distinct cyclones. Water properties at the core of anticyclonic eddies were similar to those in the core of the CU over the continental slope; these anticyclones are examples of Cuddies. Anticyclonic (cyclonic) eddies had average radii of 20.4 (20.6) km, peak azimuthal current speeds of 0.25 (0.23) m s−1, and average core anomalies of potential vorticity 65% below (125% above) ambient values. Anticyclones contained an order of magnitude greater available heat and salt anomaly relative to background conditions than cyclones on average. Circumstantial evidence of eddy decay through lateral intrusions was found although this was not observed consistently. Observed eddy properties and the geometry of flow over the continental slope were consistent with eddy formation due to frictional torque acting on the CU. Loss of heat and salt from the CU due to subthermocline eddies is estimated to account for 44% of the freshening and cooling of the CU as it flows poleward.

Corresponding author address: Noel Pelland, School of Oceanography, University of Washington, Ocean Sciences Building 343B, Box 355351, 1492 NE Boat Street, Seattle, WA 98195. E-mail: nap2@u.washington.edu

Abstract

In the California Current System, subthermocline, lenslike anticyclonic eddies generated within the California Undercurrent (CU) are one mechanism for lateral transport of the warm, saline waters of the CU. Garfield et al. established the name “Cuddies” for eddies of this type and hypothesized that they account for a significant fraction of the offshore transport of CU water. This study presents observations of subthermocline eddies collected from a time series of Seaglider surveys in the northern California Current System. Gliders made 46 crossings of subthermocline anticyclones and 17 crossings of subthermocline cyclones over 5.5 yr. Close inspection grouped these into 20 distinct anticyclones and 10 distinct cyclones. Water properties at the core of anticyclonic eddies were similar to those in the core of the CU over the continental slope; these anticyclones are examples of Cuddies. Anticyclonic (cyclonic) eddies had average radii of 20.4 (20.6) km, peak azimuthal current speeds of 0.25 (0.23) m s−1, and average core anomalies of potential vorticity 65% below (125% above) ambient values. Anticyclones contained an order of magnitude greater available heat and salt anomaly relative to background conditions than cyclones on average. Circumstantial evidence of eddy decay through lateral intrusions was found although this was not observed consistently. Observed eddy properties and the geometry of flow over the continental slope were consistent with eddy formation due to frictional torque acting on the CU. Loss of heat and salt from the CU due to subthermocline eddies is estimated to account for 44% of the freshening and cooling of the CU as it flows poleward.

Corresponding author address: Noel Pelland, School of Oceanography, University of Washington, Ocean Sciences Building 343B, Box 355351, 1492 NE Boat Street, Seattle, WA 98195. E-mail: nap2@u.washington.edu
Save