• Allison, L. C., , H. L. Johnson, , and D. P. Marshall, 2011: Spin-up and adjustment of the Antarctic Circumpolar Current and global pycnocline. J. Mar. Res., 69, 167189, doi:10.1357/002224011798765330.

    • Search Google Scholar
    • Export Citation
  • Anderson, R. F., , Z. Chase, , M. Q. Fleisher, , and J. Sachs, 2002: The Southern Ocean's biological pump during the Last Glacial Maximum. Deep-Sea Res. II, 49, 19091938, doi:10.1016/S0967-0645(02)00018-8.

    • Search Google Scholar
    • Export Citation
  • Ansorge, I., , S. Speich, , J. R. E. Lutjeharms, , G. J. Goni, , C. J. de W. Rautenbach, , P. Froneman, , M. Rouault, , and S. L. Garzoli, 2005: Monitoring the oceanic flow between Africa and Antarctica: Report of the first Good Hope cruise. S. Afr. J. Sci., 101, 2935.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and Y.-J. G. Hsu, 1990: Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations. Mon. Wea. Rev., 118, 19601969.

    • Search Google Scholar
    • Export Citation
  • Bard, E., , and R. E. M. Rickaby, 2009: Migration of the subtropical front as a modulator of glacial climate. Nature, 460, 380383, doi:10.1038/nature08189.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567, doi:10.1007/s10236-006-0082-1.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and Coauthors, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, doi:10.1038/nature09983.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , and W. Krauss, 1999: The role of mesoscale eddies in the source regions of the Agulhas Current. J. Phys. Oceanogr., 29, 23032317.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , and C. W. Böning, 2013: Anthropogenic impact on Agulhas leakage. Geophys. Res. Lett., 40, 1138–1143, doi:10.1002/grl.50243.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , C. W. Böning, , J. Getzlaff, , J.-M. Molines, , and G. Madec, 2008a: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , C. W. Böning, , and J. R. E. Lutjeharms, 2008b: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489492, doi:10.1038/nature07426.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , J. R. E. Lutjeharms, , C. W. Böning, , and M. Scheinert, 2008c: Mesoscale perturbations control inter-ocean exchange south of Africa. Geophys. Res. Lett., 35, L20602, doi:10.1029/2008GL035132.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , L. M. Beal, , J. R. E. Lutjeharms, , and T. G. D. Casal, 2009a: Variability and coherence of the Agulhas Undercurrent in a high-resolution ocean general circulation model. J. Phys. Oceanogr., 39, 24172435.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , C. W. Böning, , F. U. Schwarzkopf, , and J. R. E. Lutjeharms, 2009b: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 495498, doi:10.1038/nature08519.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., , and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388.

    • Search Google Scholar
    • Export Citation
  • Boebel, O., , J. Lutjeharms, , C. Schmid, , W. Zenk, , T. Rossby, , and C. Barron, 2003: The Cape cauldron: A regime of turbulent inter-ocean exchange. Deep-Sea Res. II, 50, 5786.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , A. Dispert, , M. Visbeck, , S. R. Rintoul, , and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Caley, T., , J. Giraudeau, , B. Malaizé, , L. Rossignol, , and C. Pierre, 2012: Agulhas leakage as a key process in the modes of Quaternary climate changes. Proc. Natl. Acad. Sci. USA, 109, 68356839, doi:10.1073/pnas.1115545109.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , R. A. DeSzoeke, , M. G. Schlax, , E. N. Karim, , and S. Nicolas, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., , and R. Marsh, 2010: Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip. Rev.: Climate Change, 1, 180191, doi:10.1002/wcc.22.

    • Search Google Scholar
    • Export Citation
  • Debreu, L., , and E. Blayo, 2008: Two-way embedding algorithms: A review. Ocean Dyn., 58, 415428, doi:10.1007/s10236-008-0150-9.

  • Dencausse, G., , M. Arhan, , and S. Speich, 2010: Spatio-temporal characteristics of the Agulhas Current retroflection. Deep-Sea Res. I, 57, 13921405, doi:10.1016/j.dsr.2010.07.004.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., , A. Biastoch, , S. S. Drijfhout, , J. R. E. Lutjeharms, , R. P. Matano, , T. Pichevin, , P. J. van Leeuwen, , and W. Weijer, 1999: Indian–Atlantic interocean exchange: Dynamics, estimation and impact ring shedding. J. Geophys. Res., 104 (C9), 20 88520 910.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and W. P. M. de Ruijter, 2001: On the physics of the Agulhas Current: Steady retroflection regimes. J. Phys. Oceanogr., 31, 29712985.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., , S. Budnick, , J. L. Sarmiento, , and R. Farneti, 2011: Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett., 38, L11605, doi:10.1029/2011GL047668.

    • Search Google Scholar
    • Export Citation
  • Franzese, A. M., , S. R. Hemming, , S. L. Goldstein, , and R. F. Anderson, 2006: Reduced Agulhas leakage during the Last Glacial Maximum inferred from an integrated provenance and flux study. Earth Planet. Sci. Lett., 250, 7288, doi:10.1016/j.epsl.2006.07.002.

    • Search Google Scholar
    • Export Citation
  • Franzese, A. M., , S. R. Hemming, , and S. L. Goldstein, 2009: Use of strontium isotopes in detrital sediments to constrain the glacial position of the Agulhas Retroflection. Paleoceanography, 24, PA2217, doi:10.1029/2008PA001706.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , O. A. Saenko, , K. Zickfeld, , M. Eby, , and A. J. Weaver, 2007: The role of poleward-intensifying winds on Southern Ocean warming. J. Climate, 20, 53915400.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 (C4), 50375046.

  • Gordon, A. L., , R. F. Weiss, , W. M. Smethie, , and M. J. Warner, 1992: Thermocline and intermediate water communication between the South Atlantic and Indian Oceans. J. Geophys. Res., 97, 72237240.

    • Search Google Scholar
    • Export Citation
  • Graham, R. M., , A. M. de Boer, , K. J. Heywood, , M. R. Chapman, , and D. P. Stevens, 2012: Southern Ocean fronts: Controlled by wind or topography? J. Geophys. Res., 117, C08108, doi:10.1029/2012JC007887.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., , and A. Beckmann, 1999: Numerical Ocean Circulation Modeling. Series on Environmental Science and Management, Vol. 2, Imperial College Press, 344 pp.

  • Hallberg, R., , and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Hodgson, D. A., , and L. C. Sime, 2010: Palaeoclimate: Southern westerlies and CO2. Nat. Geosci., 3, 666667, doi:10.1038/ngeo970.

  • Knorr, G., , and G. Lohmann, 2003: Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature, 424, 532536, doi:10.1038/nature01855.

    • Search Google Scholar
    • Export Citation
  • Kohfeld, K. E., , R. M. Graham, , A. M. de Boer, , L. C. Sime, , E. W. Wolff, , C. Le Quéré, , and L. Bopp, 2013: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quat. Sci. Rev., 68, 7695, doi:10.1016/j.quascirev.2013.01.017.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Le Bars, D., , W. P. M. de Ruijter, , and H. A. Dijkstra, 2012: A new regime of the Agulhas Current retroflection: Turbulent choking of Indian–Atlantic leakage. J. Phys. Oceanogr., 42, 11581172.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de Modelisation de l'Institut Pierre-Simon Laplace 27, 215 pp.

  • Madec, G., , and M. Imbard, 1996: A global ocean mesh to overcome the North Pole singularity. Climate Dyn., 12, 381388, doi:10.1007/BF00211684.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., , J. C. McWilliams, , and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., , L. Debreu, , and X. Couvelard, 2009: Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution. Ocean Modell., 26, 156169, doi:10.1016/j.ocemod.2008.09.004.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and R. Plumb, 2007: Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Academic Press, 334 pp.

  • Meredith, M. P., and Coauthors, 2011: Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities. Rev. Geophys., 49, RG4005, doi:10.1029/2010RG000348.

    • Search Google Scholar
    • Export Citation
  • Oke, P., , and M. England, 2004: Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Climate, 17, 10401054.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., , E. C. Brady, , G. Clauzet, , R. Tomas, , S. Levis, , and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19, 25262544.

    • Search Google Scholar
    • Export Citation
  • Ou, H., , and W. de Ruijter, 1986: Separation of an inertial boundary current from a curved coastline. J. Phys. Oceanogr., 16, 280289.

  • Peeters, F. J. C., , R. Acheson, , G.-J. Brummer, , W. P. M. de Ruijter, , R. R. Schneider, , G. M. Ganssen, , E. Ufkes, , and D. Kroon, 2004: Vigorous exchange between the Indian and Atlantic Oceans at the end of the past five glacial periods. Nature, 430, 661665, doi:10.1038/nature02785.

    • Search Google Scholar
    • Export Citation
  • Penven, P., , J. R. E. Lutjeharms, , and P. Florenchie, 2006: Madagascar: A pacemaker for the Agulhas Current system? Geophys. Res. Lett., 33, L17609, doi:10.1029/2006GL026854.

    • Search Google Scholar
    • Export Citation
  • Penven, P., , P. Marchesiello, , L. Debreu, , and J. Lefèvre, 2008: Software tools for pre- and post-processing of oceanic regional simulations. Environ. Model. Software, 23, 660662, doi:10.1016/j.envsoft.2007.07.004.

    • Search Google Scholar
    • Export Citation
  • Pichevin, T., , D. Nof, , and J. R. E. Lutjeharms, 1999: Why are there Agulhas Rings. J. Phys. Oceanogr., 29, 693707.

  • Richardson, P. L., 2007: Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters. Deep-Sea Res. I, 54, 13611389, doi:10.1016/j.dsr.2007.04.010.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., , and J. R. Dunn, 2007: Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett., 34, L13612, doi:10.1029/2007GL030392.

    • Search Google Scholar
    • Export Citation
  • Rojas, M., and Coauthors, 2008: The Southern Westerlies during the last glacial maximum in PMIP2 simulations. Climate Dyn., 32, 525548, doi:10.1007/s00382-008-0421-7.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., , P. Penven, , and B. Pohl, 2009: Warming in the Agulhas Current system since the 1980's. Geophys. Res. Lett., 36, L12602, doi:10.1029/2009GL037987.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126, 15421580.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., , and M. H. England, 2008: The effect of a northward shift in the Southern Hemisphere westerlies on the global ocean. Prog. Oceanogr., 79, 119, doi:10.1016/j.pocean.2008.07.002.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., , and M. H. England, 2009: Southern Hemisphere westerly wind control over the ocean's thermohaline circulation. J. Climate, 22, 12771286.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 27, 99164.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Speich, S., , B. Blanke, , and G. Madec, 2001: Warm and cold water routes of an OGCM thermohaline conveyor belt. Geophys. Res. Lett., 28, 311314.

    • Search Google Scholar
    • Export Citation
  • Spence, P., , J. C. Fyfe, , A. Montenegro, , and A. J. Weaver, 2010: Southern Ocean response to strengthening winds in an eddy-permitting global climate model. J. Climate, 23, 53325343.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , R. Morfley, , and W. Ermold, 2001: PHC: A global ocean hydrography with high-quality Artic Ocean. J. Climate, 14, 20792087.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., , and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L76711, doi:10.1029/2012GL052810.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • The Drakkar Group, 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, Vol. 12, International CLIVAR Project Office, Southampton, United Kingdom, 8–14.

  • Toggweiler, J. R., , J. L. Russell, , and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, 115, doi:10.1029/2005PA001154.

    • Search Google Scholar
    • Export Citation
  • Tréguier, A.-M., 1992: Kinetic energy analysis of an eddy resolving, primitive equation North Atlantic model. J. Geophys. Res., 97 (C1), 687701.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., , and P. J. van Leeuwen, 2007: Fast northward energy transfer in the Atlantic due to Agulhas rings. J. Phys. Oceanogr., 37, 23052315.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., , A. Biastoch, , P. J. van Leeuwen, , and W. P. M. de Ruijter, 2009: A weaker Agulhas Current leads to more Agulhas leakage. Geophys. Res. Lett., 36, L03601, doi:10.1029/2008GL036614.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., , P. J. van Leeuwen, , A. Biastoch, , and W. P. M. de Ruijter, 2010: Flux comparison of Eulerian and Lagrangian estimates of Agulhas leakage: A case study using a numerical model. Deep-Sea Res. I, 57, 319327, doi:10.1016/j.dsr.2009.12.006.

    • Search Google Scholar
    • Export Citation
  • Watson, P. G., , D. J. Karoly, , M. R. Allen, , N. Faull, , and D. S. Lee, 2012: Quantifying uncertainty in future Southern Hemisphere circulation trends. Geophys. Res. Lett., 39, L23708, doi:10.1029/2012GL054158.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2012: The Southern Ocean and its climate in CCSM4. J. Climate, 25, 26522675.

  • Wyrwoll, K.-H., , B. Dong, , and P. Valdes, 2000: On the position of Southern Hemisphere westerlies at the Last Glacial Maximum: An outline of AGCM simulation results and evaluation of their implications. Quat. Sci. Rev., 19, 881898, doi:10.1016/S0277-3791(99)00047-5.

    • Search Google Scholar
    • Export Citation
  • Zahn, R., , J. R. E. Lutjeharms, , A. Biastoch, , G. Knorr, , W. Park, , and C. J. C. Reason, 2010: Investigating the global impacts of the Agulhas Current. Eos, Trans. Amer. Geophys. Union, 91, 109110.

    • Search Google Scholar
    • Export Citation
  • Zalesak, S. T., 1979: Fully multidimensional flux corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 177 177 12
PDF Downloads 138 138 9

Agulhas Leakage Predominantly Responds to the Southern Hemisphere Westerlies

View More View Less
  • 1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • | 2 Department of Oceanography, University of Cape Town, Cape Town, South Africa
  • | 3 LMI ICEMASA, LPO, UMR 6523 (CNRS, IFREMER, IRD, UBO), Brest, France
  • | 4 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
© Get Permissions
Restricted access

Abstract

The Agulhas Current plays a crucial role in the thermohaline circulation through its leakage into the South Atlantic Ocean. Under both past and present climates, the trade winds and westerlies could have the ability to modulate the amount of Indian–Atlantic inflow. Compelling arguments have been put forward suggesting that trade winds alone have little impact on the magnitude of Agulhas leakage. Here, employing three ocean models for robust analysis—a global coarse-resolution, a regional eddy-permitting, and a nested high-resolution eddy-resolving configuration—and systematically altering the position and intensity of the westerly wind belt in a series of sensitivity experiments, it is shown that the westerlies, in particular their intensity, control the leakage. Leakage responds proportionally to the intensity of westerlies up to a certain point. Beyond this, through the adjustment of the large-scale circulation, energetic interactions occur between the Agulhas Return Current and the Antarctic Circumpolar Current that result in a state where leakage no longer increases. This adjustment takes place within one or two decades. Contrary to previous assertions, these results further show that an equatorward (poleward) shift in westerlies increases (decreases) leakage. This occurs because of the redistribution of momentum input by the winds. It is concluded that the reported present-day leakage increase could therefore reflect an unadjusted oceanic response mainly to the strengthening westerlies over the last few decades.

Corresponding author address: Jonathan Durgadoo, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. E-mail: jdurgadoo@gmail.com

Abstract

The Agulhas Current plays a crucial role in the thermohaline circulation through its leakage into the South Atlantic Ocean. Under both past and present climates, the trade winds and westerlies could have the ability to modulate the amount of Indian–Atlantic inflow. Compelling arguments have been put forward suggesting that trade winds alone have little impact on the magnitude of Agulhas leakage. Here, employing three ocean models for robust analysis—a global coarse-resolution, a regional eddy-permitting, and a nested high-resolution eddy-resolving configuration—and systematically altering the position and intensity of the westerly wind belt in a series of sensitivity experiments, it is shown that the westerlies, in particular their intensity, control the leakage. Leakage responds proportionally to the intensity of westerlies up to a certain point. Beyond this, through the adjustment of the large-scale circulation, energetic interactions occur between the Agulhas Return Current and the Antarctic Circumpolar Current that result in a state where leakage no longer increases. This adjustment takes place within one or two decades. Contrary to previous assertions, these results further show that an equatorward (poleward) shift in westerlies increases (decreases) leakage. This occurs because of the redistribution of momentum input by the winds. It is concluded that the reported present-day leakage increase could therefore reflect an unadjusted oceanic response mainly to the strengthening westerlies over the last few decades.

Corresponding author address: Jonathan Durgadoo, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. E-mail: jdurgadoo@gmail.com
Save