• Antonia, R. A., , and A. J. Chambers, 1980: Wind–wave-induced disturbances in the marine surface layer. J. Phys. Oceanogr., 10, 611622.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., , and J. C. R. Hunt, 1993: Turbulent shear flow over slowly moving waves. J. Fluid Mech., 251, 109148.

  • Belcher, S. E., , and J. C. R. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30, 507538.

  • Bendat, J. S., , and A. G. Piersol, 2010: Random Data Analysis and Measurement Procedures. 4th ed. Wiley and Sons, 640 pp.

  • Benjamin, T. B., 1959: Shearing flow over a wavy boundary. J. Fluid Mech., 6, 161205.

  • Bole, J. B., , and E. Y. Hsu, 1969: Response of gravity water waves to wind excitation. J. Fluid Mech., 35, 657675.

  • Chalikov, D. V., 1978: The numerical simulation of wind–wave interaction. J. Fluid Mech., 87, 561582.

  • Cohen, J. E., , and S. E. Belcher, 1999: Turbulent shear flow over fast-moving waves. J. Fluid Mech., 386, 345371.

  • Davidson, K. L., , and A. J. Frank, 1973: Wave-related fluctuations in the airflow above natural waves. J. Phys. Oceanogr., 3, 102119.

  • Davis, R. E., 1970: On the turbulent flow over a wavy boundary. J. Fluid Mech., 42, 721731.

  • Dobson, F. W., 1971: Measurements of atmospheric pressure on wind-generated sea waves. J. Fluid Mech., 48, 91127.

  • Donelan, M. A., 1998: Air–Water Exchange Processes. Geophys. Monogr., Vol. 54. Amer. Geophys. Union, 19–36.

  • Donelan, M. A., , A. V. Babanin, , I. R. Young, , and M. L. Banner, 2006: Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 16721689.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , K. K. Kahma, , and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92, 489515.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , A. A. Hinton, , K. E. Prada, , J. E. Hare, , and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and P. A. Taylor, 1976: A numerical model of the air flow above water waves. J. Fluid Mech., 77, 105128.

  • Grachev, A. A., , and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711.

  • Grare, L., , W. L. Peirson, , H. Branger, , J. W. Walker, , J.-P. Giovanangeli, , and V. Makin, 2013: Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech., 722, 550.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., , and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 26462660.

    • Search Google Scholar
    • Export Citation
  • Hara, T., , and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind–wave spectra. J. Fluid Mech., 470, 223245.

  • Hare, J. E., , T. Hara, , J. B. Edson, , and J. M. Wilczak, 1997: A similarity analysis of the structure of airflow over surface waves. J. Phys. Oceanogr., 27, 10181037.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, D., , and J. Bosenberg, 1991: Field measurements of wave-induced pressure over wind–sea and swell. J. Fluid Mech., 230, 391428.

    • Search Google Scholar
    • Export Citation
  • Högström, U., , A. Smedman, , E. Sahlée, , W. M. Drennan, , K. K. Kahma, , H. Pettersson, , and F. Zhang, 2009: The atmospheric boundary layer during swell: A field study and interpretation of the turbulent kinetic energy budget for high wave ages. J. Atmos. Sci., 66, 27642779.

    • Search Google Scholar
    • Export Citation
  • Högström, U., , A. Rutgersson, , E. Sahlée, , A.-S. Smedman, , T. Hristov, , W. Drennan, , and K. Kahma, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade wind site: An intercomparison study. Bound.-Layer Meteor., 147, 139163.

    • Search Google Scholar
    • Export Citation
  • Hristov, T. S., , S. D. Miller, , and C. A. Friehe, 2003: Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature, 422, 5558.

    • Search Google Scholar
    • Export Citation
  • Hsiao, S. V., 1983: Measurements of wind velocity and pressure with a wave follower during Marsen. J. Geophys. Res., 88 (C14), 98419849.

    • Search Google Scholar
    • Export Citation
  • Hsu, C.-T., , and E. Y. Hsu, 1983: On the structure of turbulent flow over a progressive water wave: Theory and experiment in a transformed wave-following coordinate system. Part 2. J. Fluid Mech., 131, 123153.

    • Search Google Scholar
    • Export Citation
  • Hsu, C.-T., , E. Y. Hsu, , and R. L. Street, 1981: On the structure of turbulent flow over a progressive water wave: Theory and experiment in a transformed, wave-following coordinate system. J. Fluid Mech., 105, 87117.

    • Search Google Scholar
    • Export Citation
  • Hsu, C.-T., , H.-Y. Wu, , E.-Y. Hsu, , and R. L. Street, 1982: Momentum and energy transfer in wind generation of waves. J. Phys. Oceanogr., 12, 929951.

    • Search Google Scholar
    • Export Citation
  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 308 pp.

  • Kato, H., , and K. Sano, 1969: Measurements of wind velocity fluctuations over waves in a wind–wave tunnel. Port and Airport Research Institute Tech. Rep. 1, 35 pp.

  • Kihara, N., , H. Hanazaki, , T. Mizuya, , and H. Ueda, 2007: Relationship between airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids,19, 015102, doi:10.1063/1.2409736.

  • Kondo, J., , Y. Fujinawa, , and G. Naito, 1972: Wave-induced wind fluctuation over the sea. J. Fluid Mech., 51, 751771.

  • Lai, R. J., , and O. H. Shemdin, 1971: Laboratory investigation of air turbulence above simple water waves. J. Geophys. Res., 76, 73347350.

    • Search Google Scholar
    • Export Citation
  • Makin, V., 2008: On the possible impact of a following-swell on the atmospheric boundary layer. Bound.-Layer Meteor., 129, 469478.

  • Makin, V., , and V. N. Kudryavtsev, 1999: Coupled sea surface–atmosphere model 1. Wind over waves coupling. J. Geophys. Res., 104 (C4), 76137623.

    • Search Google Scholar
    • Export Citation
  • Makin, V., , V. N. Kudryavtsev, , and C. Mastenbroek, 1995: Drag of the sea surface. Bound.-Layer Meteor., 73, 159182.

  • Massel, S., , and R. Brinkman, 1998: On the determination of directional wave spectra for practical applications. Appl. Ocean Res., 20, 357374.

    • Search Google Scholar
    • Export Citation
  • Mastenbroek, C., , V. K. Makin, , M. H. Garat, , and J. P. Giovanangeli, 1996: Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech., 318, 273302.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185204.

  • Miles, J. W., 1959: On the generation of surface waves by shear flows. Part 2. J. Fluid Mech., 6, 568582.

  • Miles, J. W., 1993: Surface-wave generation revisited. J. Fluid Mech., 256, 427441.

  • Mitsuyasu, H., , and T. Honda, 1982: Wind-induced growth of water waves. J. Fluid Mech., 123, 425442.

  • Monin, A., , and A. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1963: Determination of stress from wind and temperature measurements. Quart. J. Roy. Meteor. Soc., 89, 8594.

  • Papadimitrakis, Y. A., , E. Y. Hsu, , and R. L. Street, 1984: On the structure of the velocity field over progressive mechanically-generated water waves. J. Phys. Oceanogr., 14, 19371948.

    • Search Google Scholar
    • Export Citation
  • Papadimitrakis, Y. A., , E. Y. Hsu, , and R. L. Street, 1986: The role of wave-induced pressure fluctuations in the transfer processes across an air–water interface. J. Fluid Mech., 170, 113137.

    • Search Google Scholar
    • Export Citation
  • Peirson, W. L., , and A. W. Garcia, 2008: On the wind-induced growth of slow water waves of finite steepness. J. Fluid Mech., 608, 243274.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87 (C3), 19611967.

  • Savelyev, I. B., , B. K. Haus, , and M. A. Donelan, 2011: Experimental study on wind–wave momentum flux in strongly forced conditions. J. Phys. Oceanogr., 41, 13281344.

    • Search Google Scholar
    • Export Citation
  • Shemdin, O. H., , and E. Y. Hsu, 1967: Direct measurement of aerodynamic pressure above a simple progressive gravity wave. J. Fluid Mech., 30, 403416.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., , U. Högström, , H. Bergström, , A. Rutgersson, , K. K. Kahma, , and H. Pettersson, 1999: A case study of air–sea interaction during swell conditions. J. Geophys. Res.,104 (C11), 25 833–25 851.

  • Smedman, A., , X. G. Larsén, , U. Högström, , K. K. Kahma, , and H. Pettersson, 2003: Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys. Res., 108, 3367, doi:10.1029/2002JC001526.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., , U. Högström, , E. Sahlée, , W. M. Drennan, , K. K. Kahma, , H. Pettersson, , and F. Zhang, 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66, 27472763.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , and K. F. Rieder, 1997: Wave-induced motion of flip. Ocean Eng., 24, 95110.

  • Snyder, R. L., , F. W. Dobson, , J. A. Elliott, , and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 159.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., 1970: Laboratory studies of the velocity field over deep-water waves. J. Fluid Mech., 42, 733754.

  • Sullivan, P. P., , J. C. McWilliams, , and C.-H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. B. Edson, , T. Hristov, , and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. Mc Williams, , and T. Hristov, 2010: Large eddy simulation of high wind marine boundary layers above a spectrum of resolved moving waves. Preprints, 19th Symp. on Boundary Layers and Turbulence, Keystone, CO, Amer. Meteor. Soc., 4B.4. [Available online at https://ams.confex.com/ams/19Ag19BLT9Urban/techprogram/paper_172658.htm.]

  • Townsend, A. A., 1972: Flow in a deep turbulent boundary layer over a surface distorted by water waves. J. Fluid Mech., 55, 719735.

  • Veron, F., , W. K. Melville, , and L. Lenain, 2008: Wave-coherent air–sea heat flux. J. Phys. Oceanogr., 38, 788802.

  • Veron, F., , W. K. Melville, , and L. Lenain, 2009: Measurements of ocean surface turbulence and wave-turbulence interactions. J. Phys. Oceanogr., 39, 23102323.

    • Search Google Scholar
    • Export Citation
  • WAFO-Group, cited 2000: WAFO—A MATLAB toolbox for analysis of random waves and loads—A tutorial. Department of Mathematical Statistics, Centre for Mathematical Sciences, Lund University. [Available online at http://www.maths.lth.se/matstat/wafo/.]

  • Webb, E. K., , G. I. Pearman, , and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100.

    • Search Google Scholar
    • Export Citation
  • Wilson, W. S., , M. L. Banner, , R. J. Flower, , J. A. Michael, , and D. G. Wilson, 1973: Wind-induced growth of mechanically generated water waves. J. Fluid Mech., 58, 435460.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 7
PDF Downloads 79 79 8

Wave-Coherent Airflow and Critical Layers over Ocean Waves

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

An analysis of coherent measurements of winds and waves from data collected during the Office of Naval Research (ONR) High-Resolution air–sea interaction (HiRes) program, from the Floating Instrument Platform (R/P FLIP), off the coast of northern California in June 2010 is presented. A suite of wind and wave measuring systems was deployed to resolve the modulation of the marine atmospheric boundary layer by waves. Spectral analysis of the data provided the wave-induced components of the wind velocity for various wind–wave conditions. The power spectral density, the amplitude, and the phase (relative to the waves) of these wave-induced components are computed and bin averaged over spectral wave age c/U(z) or c/u*, where c is the linear phase speed of the waves, U(z) is the mean wind speed measured at the height z of the anemometer, and u* is the friction velocity in the air. Results are qualitatively consistent with the critical layer theory of Miles. Across the critical height zc, defined such that U(zc) = c, the wave-induced vertical and horizontal velocities change significantly in both amplitude and phase. The measured wave-induced momentum flux shows that, for growing waves, less than 10% of the momentum flux at z ≈ 10 m is supported by waves longer than approximately 15 m. For older sea states, these waves are able to generate upward wave-induced momentum flux opposed to the overall downward momentum flux. The measured amplitude of this upward wave-induced momentum flux was up to 20% of the value of the total wind stress when Cp/u* > 60, where Cp is the phase speed at the peak of the wave spectrum.

Corresponding author address: W. Kendall Melville, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: kmelville@ucsd.edu

Abstract

An analysis of coherent measurements of winds and waves from data collected during the Office of Naval Research (ONR) High-Resolution air–sea interaction (HiRes) program, from the Floating Instrument Platform (R/P FLIP), off the coast of northern California in June 2010 is presented. A suite of wind and wave measuring systems was deployed to resolve the modulation of the marine atmospheric boundary layer by waves. Spectral analysis of the data provided the wave-induced components of the wind velocity for various wind–wave conditions. The power spectral density, the amplitude, and the phase (relative to the waves) of these wave-induced components are computed and bin averaged over spectral wave age c/U(z) or c/u*, where c is the linear phase speed of the waves, U(z) is the mean wind speed measured at the height z of the anemometer, and u* is the friction velocity in the air. Results are qualitatively consistent with the critical layer theory of Miles. Across the critical height zc, defined such that U(zc) = c, the wave-induced vertical and horizontal velocities change significantly in both amplitude and phase. The measured wave-induced momentum flux shows that, for growing waves, less than 10% of the momentum flux at z ≈ 10 m is supported by waves longer than approximately 15 m. For older sea states, these waves are able to generate upward wave-induced momentum flux opposed to the overall downward momentum flux. The measured amplitude of this upward wave-induced momentum flux was up to 20% of the value of the total wind stress when Cp/u* > 60, where Cp is the phase speed at the peak of the wave spectrum.

Corresponding author address: W. Kendall Melville, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: kmelville@ucsd.edu
Save