• Booij, N., , R. C. Ris, , and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104 (C4), 76497666.

    • Search Google Scholar
    • Export Citation
  • Buckles, J., , T. J. Hanratty, , and R. Adrian, 1984: Turbulent flow over large-amplitude wavy surfaces. J. Fluid Mech., 140, 2744.

  • Craig, P. D., , and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1999: Wind-induced growth and attenuation of laboratory waves. Wind-over-Wave Couplings, S. G. Sajjadi, N. H. Thomas, and J. C. R. Hunt, Eds., Clarendon Press, 183–194.

  • Donelan, M. A., , J. Hamilton, , and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , M. Skafel, , H. Graber, , P. Liu, , D. Schwab, , and S. Venkates, 1992: On the growth of wind-generated waves. Atmos.–Ocean, 30, 457478.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , M. Curcic, , S. S. Chen, , and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, doi:10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., , L. H. Kantha, , S. Hassid, , and A. Rosatiu, 1988: A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 5562.

    • Search Google Scholar
    • Export Citation
  • Garrett, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929.

  • Hwang, P. A., 2006: Duration and fetch-limited growth functions and wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res., 111, C02005, doi:10.1029/2005JC003180.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , and D. W. Wang, 2004: Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 23162326.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr., 19, 745754.

  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Martin, P. J., 1985: Simulation of the mixed layers at OWS November and Papa with several models. J. Geophys. Res., 90, 903916.

  • Mellor, G. L., 2001: One-dimensional, ocean surface layer modeling: A problem and a solution. J. Phys. Oceanogr., 31, 790809.

  • Mellor, G. L., 2003: The three-dimensional, current, and surface wave equations. J. Phys. Oceanogr.,33, 1978–1989.

  • Mellor, G. L., 2005: Some consequences of the three-dimensional current and surface wave equations. J. Phys. Oceanogr., 35, 22912298.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2011: Wave radiation stress. Ocean Dyn., 61, 563568.

  • Mellor, G. L., 2013: Waves, circulation, and vertical dependence. Ocean Dyn., 63, 447457.

  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and A. Blumberg, 2004: Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr., 34, 693698.

  • Mellor, G. L., , M. A. Donelan, , and L.-Y. Oey, 2008: A surface wave model for coupling with numerical ocean circulation models. J. Atmos. Oceanic Technol., 35, 17851807.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., , and R. C. Millard, 1970: Comparisons between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 813821.

    • Search Google Scholar
    • Export Citation
  • Schlicting, H., 1979: Boundary Layer Theory. 7th ed. McGraw-Hill, 817 pp.

  • Snodgrass, F. E., , G. W. Groves, , K. Hasselmann, , G. R. Miller, , W. H. Munk, , and W. H. Powers, 1966: Propagation of swell across the Pacific. Philos. Trans. Roy. Soc. London, 259, 431497.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , M. A. Donelan, , Y. C. Agrawal, , W. M. Drennan, , K. K. Kahma, , A. J. Williams III, , P. A. Hwang, , and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , W. M. Drennan, , and M. A. Donelan, 1999: The vertical structure of shear and dissipation on the ocean surface layer. The Wind-Driven Air–Sea Interface, School of Mathematics, University of New South Wales, 239–245.

  • Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111, C08020, doi:10.1029/2006JC003540.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 4
PDF Downloads 28 28 6

Pressure–Slope Momentum Transfer in Ocean Surface Boundary Layers Coupled with Gravity Waves

View More View Less
  • 1 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The paper focuses on the consequences of including surface and subsurface, wind-forced pressure–slope momentum transfer into the oceanic water column, a transfer process that competes with now-conventional turbulence transfer based on mixing coefficients. Horizontal homogeneity is stipulated as is customary when introducing a new surface boundary layer model or significantly new vertical momentum transfer physics to an existing model. An introduction to pressure–slope momentum transfer is first provided by a phase-resolved, vertically dependent analytical model that excludes turbulence transfer. There follows a discussion of phase averaging; an appendix is an important adjunct to the discussion. Finally, a coupled wave–circulation model, which includes pressure–slope and turbulence momentum transfer, is presented and numerically executed. The calculated temperatures compare well with measurements from ocean weather station Papa.

Corresponding author address: George Mellor, Program in Atmospheric and Oceanic Sciences, Sayre Hall, Forrestal Campus, Princeton University, Princeton, NJ 08540. E-mail: glmellor@princeton.edu

Abstract

The paper focuses on the consequences of including surface and subsurface, wind-forced pressure–slope momentum transfer into the oceanic water column, a transfer process that competes with now-conventional turbulence transfer based on mixing coefficients. Horizontal homogeneity is stipulated as is customary when introducing a new surface boundary layer model or significantly new vertical momentum transfer physics to an existing model. An introduction to pressure–slope momentum transfer is first provided by a phase-resolved, vertically dependent analytical model that excludes turbulence transfer. There follows a discussion of phase averaging; an appendix is an important adjunct to the discussion. Finally, a coupled wave–circulation model, which includes pressure–slope and turbulence momentum transfer, is presented and numerically executed. The calculated temperatures compare well with measurements from ocean weather station Papa.

Corresponding author address: George Mellor, Program in Atmospheric and Oceanic Sciences, Sayre Hall, Forrestal Campus, Princeton University, Princeton, NJ 08540. E-mail: glmellor@princeton.edu
Save