• Bretherton, F. S., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334.

  • Eden, C., 2010: Parameterising meso-scale eddy momentum fluxes based on potential vorticity mixing and a gauge term. Ocean Modell., 32, 5871.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239.

  • Flierl, G. R., 1978: Models of vertical structure and calibration of two-layer models. Dyn. Atmos. Oceans, 2, 341381.

  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 14941497.

  • Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model Dev., 4, 223253.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., 1984: Parameterization of the eddy fluxes of the quasi-geostrophic potential vorticity in zonal flows. Dokl. Acad. Nauk USSR, 277, 972976.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., 1987: The influence of bottom topography on the eddy transfer coefficient. Izv. Akad. Nauk SSSR, Ser. Geofiz., 21, 250260.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., K. J. Richards, and D. P. Stevens, 1996: The dynamics of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 26, 753774.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., K. J. Richards, B. Sinha, and J.-O. Wolff, 1997: Parameterization of mesoscale eddy fluxes in zonal ocean flows. J. Mar. Res., 55, 11271162.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., S. Danilov, and D. Olbers, 2008: Eddies in numerical models of the Southern Ocean. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 177–198.

  • Kamenkovich, V. M., M. N. Koshlyakov, and A. S. Monin, 1986: Synoptic Eddies in the Ocean. D. Reidel Publishing Company, 433 pp.

  • Madec, G., 2008: NEMO reference manual, ocean dynamic component: NEMO-OPA, Preliminary version. Institut Pierre Simon Laplace Note du Pole de Modelisation Tech. Rep. 27, 1288–1619.

  • Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Modell., 32, 188204.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., 1981: On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr., 11, 257271.

  • McWilliams, J. C., 1977: A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans, 1, 427441.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and J. S. Chow, 1981: Equilibrium geostrophic turbulence. I. A reference solution in a beta plane channel. J. Phys. Oceanogr., 11, 921949.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., W. R. Holland, and J. S. Chow, 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2, 213291.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355.

  • Nayfeh, A. H., 1973: Perturbation Methods. Wiley-Interscience, 437 pp.

  • Olbers, D., 2005: On the role of eddy mixing in the transport of zonal ocean currents. Marine Turbulence. Theories, Observations, and Models, H. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 630 pp.

  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer Verlag, 624 pp.

  • Ringler, T., and P. Gent, 2011: An eddy closure for potential vorticity. Ocean Modell., 39, 125134.

  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666.

    • Search Google Scholar
    • Export Citation
  • Sinha, B., and K. J. Richards, 1999: Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr., 29, 11431155.

  • Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy–resolving general–circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929951.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind–driven, stratified flow in a β–plane channel: an idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Fundamentals and Large-Scale Circulation. Cambridge University Press, 770 pp.

  • Wolff, J.-O., and D. J. Olbers, 1989: The dynamical balance of the Antarctic Circumpolar Current studied with an eddy-resolving quasi-geostrophic model. Mesoscale-Synoptic Coherent Structures in Geophysical Turbulence, Elsevier, 435458.

    • Search Google Scholar
    • Export Citation
  • Wolff, J.-O., E. Maier–Reimer, and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal β–plane channel: A quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 21, 236264.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 26 5
PDF Downloads 51 14 0

Influence of Bottom Topography on Integral Constraints in Zonal Flows with Parameterized Potential Vorticity Fluxes

V. O. IvchenkoUniversity of Southampton, National Oceanography Centre, Southampton, United Kingdom

Search for other papers by V. O. Ivchenko in
Current site
Google Scholar
PubMed
Close
,
B. SinhaNational Oceanography Centre, Southampton, United Kingdom

Search for other papers by B. Sinha in
Current site
Google Scholar
PubMed
Close
,
V. B. ZalesnyInstitute of Numerical Mathematics, Moscow, Russia

Search for other papers by V. B. Zalesny in
Current site
Google Scholar
PubMed
Close
,
R. MarshUniversity of Southampton, National Oceanography Centre, Southampton, United Kingdom

Search for other papers by R. Marsh in
Current site
Google Scholar
PubMed
Close
, and
A. T. BlakerNational Oceanography Centre, Southampton, United Kingdom

Search for other papers by A. T. Blaker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An integral constraint for eddy fluxes of potential vorticity (PV), corresponding to global momentum conservation, is applied to two-layer zonal quasigeostrophic channel flow. This constraint must be satisfied for any type of parameterization of eddy PV fluxes. Bottom topography strongly influences the integral constraint compared to a flat bottom channel. An analytical solution for the mean flow solution has been found by using asymptotic expansion in a small parameter, which is the ratio of the Rossby radius to the meridional extent of the channel. Applying the integral constraint to this solution, one can find restrictions for eddy PV transfer coefficients that relate the eddy fluxes of PV to the mean flow. These restrictions strongly deviate from restrictions for the channel with flat bottom topography.

Corresponding author address: V. O. Ivchenko, University of Southampton, National Oceanography Centre, Southampton United Kingdom. E-mail: voi@noc.soton.ac.uk

Abstract

An integral constraint for eddy fluxes of potential vorticity (PV), corresponding to global momentum conservation, is applied to two-layer zonal quasigeostrophic channel flow. This constraint must be satisfied for any type of parameterization of eddy PV fluxes. Bottom topography strongly influences the integral constraint compared to a flat bottom channel. An analytical solution for the mean flow solution has been found by using asymptotic expansion in a small parameter, which is the ratio of the Rossby radius to the meridional extent of the channel. Applying the integral constraint to this solution, one can find restrictions for eddy PV transfer coefficients that relate the eddy fluxes of PV to the mean flow. These restrictions strongly deviate from restrictions for the channel with flat bottom topography.

Corresponding author address: V. O. Ivchenko, University of Southampton, National Oceanography Centre, Southampton United Kingdom. E-mail: voi@noc.soton.ac.uk
Save