• Athié, G., and F. Marin, 2008: Cross-equatorial structure and temporal modulation of intraseasonal variability at the surface of the tropical Atlantic Ocean. J. Geophys. Res., 113, C08020, doi:10.1029/2007JC004332.

    • Search Google Scholar
    • Export Citation
  • Athié, G., F. Marin, A.-M. Tréguier, B. Bourles, and C. Guiavarc’h, 2009: Sensitivity of near-surface tropical instability waves to submonthly wind forcing in the tropical Atlantic. Ocean Modell., 30, 241255.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56 (5–6), 543567.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, W. M. Drennan, and E. B. Forde, 2002: Daily surface wind fields produced by merged satellite data. Gas Transfer at Water Surfaces, Geophys. Monogr., Vol. 127, Amer. Geophys. Union, 343–349.

  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23, 13631388.

    • Search Google Scholar
    • Export Citation
  • Bourlès, B., and Coauthors, 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111125.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., C. Provost, and A. Kartavtseff, 2007: Variability in horizontal current velocities in the central and eastern equatorial Atlantic in 2002. J. Geophys. Res., 112, C02014, doi:10.1029/2006JC003704.

    • Search Google Scholar
    • Export Citation
  • Caniaux, G., H. Giordani, J. L. Redelsperger, F. Guichard, E. Key, and M. Wade, 2011: Coupling between the Atlantic cold tongue and the West African monsoon in boreal spring and summer. J. Geophys. Res., 116, C04003, doi:10.1029/2010JC006570.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and Z. Zhou, 1997: Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res., 102 (C13), 27 81327 824.

    • Search Google Scholar
    • Export Citation
  • de Coëtlogon, S. J., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2010: Intraseasonal variability of the ocean-atmosphere coupling in the Gulf of Guinea during boreal spring and summer. J. Geophys. Res., 109, C120031, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., S. Illig, L. Renault, K. Goubanova, K. Takahashi, D. Gushchina, K. Mosquera, and S. Purca, 2011: Modes of covariability between sea surface temperature and wind stress intraseasonal anomalies along the coast of Peru from satellite observations (2000–2008). J. Geophys. Res., 116, C04028, doi:10.1029/2010JC006495.

    • Search Google Scholar
    • Export Citation
  • Du Penhoat, Y., and A. M. Tréguier, 1985: The seasonal linear response of the Atlantic Ocean. J. Phys. Oceanogr., 15, 316329.

  • Hallock, Z., 1979: On wind-exited, equatorially trapped waves in the presence of mean currents. Deep-Sea Res., 26 (GATE Suppl. II), 262284.

    • Search Google Scholar
    • Export Citation
  • Han, W., P. J. Webster, J.-L. Lin, W. T. Liu, R. Fu, D. Yuan, and A. Hu, 2008: Dynamics of intraseasonal sea level and thermocline variability in the equatorial Atlantic during 2002–03. J. Phys. Oceanogr., 38, 945966.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and C. Colin, 1987: Wind-driven meridional heat flux in the Gulf of Guinea. J. Geophys. Res., 92 (C10), 10 77710 786.

    • Search Google Scholar
    • Export Citation
  • Hummels, R., M. Dengler, and B. Bourlès, 2013: Seasonal and regional variability of upper ocean diapycnal heat flux in the Atlantic Cold Tongue. Prog. Oceanogr.,doi:10.1016/j.pocean.2012.11.001, in press.

  • Illig, S., B. Dewitte, N. Ayoub, Y. du Penhoat, G. Reverdin, P. De Mey, F. Bonjean, and G. S. Lagerloef, 2004: Interannual long equatorial waves in the tropical Atlantic from a high-resolution ocean general circulation model experiment in 1981 – 2000. J. Geophys. Res., 109, C02022, doi:10.1029/2003JC001771.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., and Coauthors, 2011: Intraseasonal variability of the West African monsoon. Atmos. Sci. Lett., 12, 5866.

  • Jochum, M., P. Malanotte-Rizzoli, and A. Busalacchi, 2004: Tropical instability waves in the Atlantic Ocean. Ocean Modell., 7, 145163.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., F. Marin, Y. Du Penhoat, J.-M. Molines, and J. Sheinbaum, 2011a: Seasonal modes of surface cooling in the Gulf of Guinea. J. Phys. Oceanogr., 41, 14081416.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., F. Marin, Y. Du Penhoat, J. Sheinbaum, and J.-M. Molines, 2011b: Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean. J. Geophys. Res., 116, C09003, doi:10.1029/2010JC006912.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and T. Krishnamurti, 1980: Surface meteorology over the GATE A-scale. Deep-Sea Res., 26 (GATE Suppl. II), 2661.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 14, 809817.

    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean sea ice models: The datasets and flux climatologies. National Center for Atmospheric Research Rep. NCAR/TN-460+STR, 105 pp.

  • Lien, R.-C., E. A. D’Asaro, and C. E. Menkes, 2008: Modulation of equatorial turbulence by tropical instability waves. Geophys. Res. Lett., 35, L24607, doi:10.1029/2008GL035860.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: “NEMO ocean engine.” Institut Pierre-Simon Laplace Note du pôle de modélisation 27, 367 pp.

  • Marin, F., G. Caniaux, B. Bourlès, H. Giordanni, Y. Gouriou, and E. Key, 2009: Why were sea surface temperatures so different in the eastern equatorial Atlantic in June 2005 and 2006? J. Phys. Oceanogr., 39, 14161431.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasigesotrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542.

  • McPhaden, M. J., 1990: Comment on “Rossby-gravity waves in the central equatorial Pacific Ocean during the NORPAX Hawaii-to-Tahiti shuttle experiment” by S. M. Chiswell and R. Lukas. J. Geophys. Res., 95 (C1), 805806.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., J. Vialard, S. C. Kennan, J.-P. Boulanger, and G. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the Equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and S.-P. Xie, 2004: Interaction of the Atlantic equatorial cold tongue and the African monsoon. J. Climate, 17, 35893602.

    • Search Google Scholar
    • Export Citation
  • Perez, R. C., R. Lumpkin, W. E. Johns, G. R. Foltz, and V. Hormann, 2012: Interannual variations of Atlantic tropical instability waves. J. Geophys. Res., 117, C03011, doi:10.1029/2011JC007584.

    • Search Google Scholar
    • Export Citation
  • Peter, A.-C., M. Le Hénaff, Y. Du Penhoat, C. E. Menkes, F. Marin, J. Vialard, G. Caniaux, and A. Lazar, 2006: A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J. Geophys. Res., 111, C06014, doi:10.1029/2005JC003157.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1978: Forced oceanic waves. Rev. Geophys. Space Phys., 16, 1546.

  • Picaut, J., 1983: Propagation of the seasonal upwelling in the eastern Equatorial Atlantic. J. Phys. Oceanogr., 13, 1837.

  • Picaut, J., 1984: On the dynamics of thermal variations in the Gulf of Guinea. Oceanogr. Trop., 19, 127153.

  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, M. J. McPhaden, M. Cronin, F. Pinsard, and K. Gopala Reddy, 2013: TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products, Climate Dyn., doi:10.1007/s00382-012-1455-4, in press.

  • von Schuckmann, K., P. Brandt, and C. Eden, 2008: Generation of tropical instability waves in the Atlantic Ocean. J. Geophys. Res., 113, C08034, doi:10.1029/2007JC004712.

    • Search Google Scholar
    • Export Citation
  • Wade, M., G. Caniaux, and Y. du Penhoat, 2011a: Variability of the mixed layer heat budget in the eastern equatorial Atlantic during 2005-2007 as inferred using Argo floats. J. Geophys. Res., 116, C08006, doi:10.1029/2010JC006683.

    • Search Google Scholar
    • Export Citation
  • Wade, M., G. Caniaux, Y. du Penhoat, M. Dengler, H. Giordani, and R. Hummels, 2011b: A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign. Ocean Dyn., 61, 120, doi:10.1007/s10236-010-0337-8.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., A. Horigan, and C. Colin, 1979: Equatorially trapped Rossby–gravity wave propagation in the Gulf of Guinea. J. Mar. Res., 37, 6786.

    • Search Google Scholar
    • Export Citation
  • Yu, W., W. Han, E. D. Maloney, D. Gochis, and S.-P. Xie, 2011: Observations of eastward propagation of atmospheric intraseasonal oscillations from the Pacific to the Atlantic. J. Geophys. Res., 116, D02101, doi:10.1029/2010JD014336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 33 10
PDF Downloads 57 14 5

Intraseasonal Modulation of the Surface Cooling in the Gulf of Guinea

Julien JouannoDepartamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico

Search for other papers by Julien Jouanno in
Current site
Google Scholar
PubMed
Close
,
Frédéric MarinIRD, LEGOS, Nouméa, New Caledonia, and UPS (OMP-PCA), LEGOS, Université de Toulouse, Toulouse, France

Search for other papers by Frédéric Marin in
Current site
Google Scholar
PubMed
Close
,
Yves du PenhoatIRD, CRHOB, Cotonou, Bénin, and UPS (OMP-PCA), LEGOS, Université de Toulouse, Toulouse, France

Search for other papers by Yves du Penhoat in
Current site
Google Scholar
PubMed
Close
, and
Jean-Marc MolinesMEOM, LEGI-CNRS, Grenoble, France

Search for other papers by Jean-Marc Molines in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A regional numerical model of the tropical Atlantic Ocean and observations are analyzed to investigate the intraseasonal fluctuations of the sea surface temperature at the equator in the Gulf of Guinea. Results indicate that the seasonal cooling in this region is significantly shaped by short-duration cooling events caused by wind-forced equatorial waves: mixed Rossby–gravity waves within the 12–20-day period band, inertia–gravity waves with periods below 11 days, and equatorially trapped Kelvin waves with periods between 25 and 40 days. In these different ranges of frequencies, it is shown that the wave-induced horizontal oscillations of the northern front of the mean cold tongue dominate the variations of mixed layer temperature near the equator. But the model mixed layer heat budget also shows that the equatorial waves make a significant contribution to the mixed layer heat budget through modulation of the turbulent cooling, especially above the core of the Equatorial Undercurrent (EUC). The turbulent cooling variability is found to be mainly controlled by the intraseasonal modulation of the vertical shear in the upper ocean. This mechanism is maximum during periods of seasonal cooling, especially in boreal summer, when the surface South Equatorial Current is strongest and between 2°S and the equator, where the presence of the EUC provides a background vertical shear in the upper ocean. It applies for the three types of intraseasonal waves. Inertia–gravity waves also modulate the turbulent heat flux at the equator through vertical displacement of the core of the EUC in response to equatorial divergence and convergence.

Corresponding author address: Julien Jouanno, Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico. E-mail: jouanno@cicese.mx

Abstract

A regional numerical model of the tropical Atlantic Ocean and observations are analyzed to investigate the intraseasonal fluctuations of the sea surface temperature at the equator in the Gulf of Guinea. Results indicate that the seasonal cooling in this region is significantly shaped by short-duration cooling events caused by wind-forced equatorial waves: mixed Rossby–gravity waves within the 12–20-day period band, inertia–gravity waves with periods below 11 days, and equatorially trapped Kelvin waves with periods between 25 and 40 days. In these different ranges of frequencies, it is shown that the wave-induced horizontal oscillations of the northern front of the mean cold tongue dominate the variations of mixed layer temperature near the equator. But the model mixed layer heat budget also shows that the equatorial waves make a significant contribution to the mixed layer heat budget through modulation of the turbulent cooling, especially above the core of the Equatorial Undercurrent (EUC). The turbulent cooling variability is found to be mainly controlled by the intraseasonal modulation of the vertical shear in the upper ocean. This mechanism is maximum during periods of seasonal cooling, especially in boreal summer, when the surface South Equatorial Current is strongest and between 2°S and the equator, where the presence of the EUC provides a background vertical shear in the upper ocean. It applies for the three types of intraseasonal waves. Inertia–gravity waves also modulate the turbulent heat flux at the equator through vertical displacement of the core of the EUC in response to equatorial divergence and convergence.

Corresponding author address: Julien Jouanno, Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, Mexico. E-mail: jouanno@cicese.mx
Save