• Arbic, B. K., and G. R. Flierl, 2004: Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr.,34, 77–93.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and Coauthors, 2009: Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res.,114, C02024, doi:10.1029/2008JC005072.

  • Armi, L., and R. C. Millard, 1976: The bottom boundary layer of the deep ocean. J. Geophys. Res.,81, 4983, doi:10.1029/JC081i027p04983.

  • Brink, K. H., and S. J. Lentz, 2009: Buoyancy arrest and bottom Ekman transport. Part I: Steady flow. J. Phys. Oceanogr.,40, 621–635.

  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech.,534, 67–95, doi:10.1017/S0022112005004374.

  • Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst.,65, 60–83, doi:10.1016/j.jmarsys.2005.09.016.

  • Döös, K., J. Nycander, and P. Sigray, 2004: Slope-dependent friction in a barotropic model. J. Geophys. Res.,109, C01008, doi:10.1029/2002JC001517.

  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res.,105 (C8), 19477–19498.

  • Duncan, L. M., H. L. Bryden, and S. A. Cunningham, 2003: Friction and mixing in the Faroe Bank Channel outflow. Oceanol. Acta,26, 473–486, doi:10.1016/S03991784(03)00042-2.

  • Fang, G., Y.-K. Kwok, K. Yu, and Y. Zhu, 1999: Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res.,19, 845–869, doi:10.1016/S0278-4343(99)00002-3.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech.,41, 253–282, doi:10.1146/annurev.fluid.40.111406.102139.

  • Garrett, C., 2003: Oceanography: Mixing with latitude. Nature,422, 477, doi:10.1038/422477a.

  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech.,25, 291–323, doi:10.1146/annurev.fl.25.010193.001451.

  • Gordon, A. L., A. H. Orsi, R. Muench, B. A. Huber, E. Zambianchi, and M. Visbeck, 2009: Western Ross Sea continental slope gravity currents. Deep Sea Res. II,56, 796–817, doi:10.1016/j.dsr2.2008.10.037.

  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, Springer, 768 pp.

  • Holloway, G., A. T. Nguyen, and Z. Wang, 2011: Oceans and ocean models as seen by current meters. J. Geophys. Res.,116, C00D08, doi:10.1029/2011JC007044.

  • Hughes, C. W., and C. Wilson, 2008: Wind work on the geostrophic circulation: An observational study of the effect of small scales in the wind stress. J. Geophys. Res.,113, C02016, doi:10.1029/2007JC004371.

  • Killworth, P. D., and J. R. Blundell, 2007: Planetary wave response to surface forcing and instability in the presence of mean flow and topography. J. Phys. Oceanogr., 37, 12971320.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys.,45, RG2001, doi:10.1029/2004RG000166.

  • Müller, P., J. C. McWilliams, and M. J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations and Models, H. Baumert, J. Simpson, and J. Sundermann, Eds., Cambridge University Press, 397–405.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res. I,45, 1977–2010, doi:10.1016/S0967-0637(98)00070-3.

  • Murray, S. P., and W. Johns, 1997: Direct observations of seasonal exchange through the Bab el Mandab Strait. Geophys. Res. Lett.,24, 2560, doi:10.1029/97GL02741.

  • Nikurashin, M., and R. Ferrari, 2009: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr.,40, 1055–1074.

  • Oey, L. Y., and H. C. Lee, 2002: Deep eddy energy and topographic Rossby waves in the Gulf of Mexico. J. Phys. Oceanogr.,32, 3499–3527.

  • Perlin, A., J. N. Moum, J. M. Klymak, M. D. Levine, T. Boyd, and P. M. Kosro, 2005: A modified law-of-the-wall applied to oceanic bottom boundary layers. J. Geophys. Res.,110, C10S10, doi:10.1029/2004JC002310.

  • Qiu, B., R. B. Scott, and S. Chen, 2008: Length-scales of generation and nonlinear evolution of the seaonally-modulated South Pacific subtropic countercurrent. J. Phys. Oceanogr., 38, 15151528.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., 1999: Geostrophic energetics and the small viscosity behaviour of an idealized ocean circulation model. Ph.D. dissertation, McGill University, 124 pp. [Available from http://www.ig.utexas.edu/people/staff/rscott/.]

  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep Sea Res. I,56, 295–304.

  • Scott, R. B., B. K. Arbic, E. P. Chassignet, A. C. Coward, M. Maltrud, W. J. Merryfield, A. Srinivasan, and A. Varghese, 2010: Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records. Ocean Modell.,32, 157–169.

  • Scott, R. B., J. A. Goff, A. C. N. Garabato, and A. J. G. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res.,116, C09029, doi:10.1029/2011JC007005.

  • Sen, A., R. B. Scott, and B. K. Arbic, 2008: Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: Computations from current-meter data. Geophys. Res. Lett.,35, L09606, doi:10.1029/2008GL033407.

  • Shearman, R. K., and S. J. Lentz, 2003: Dynamics of mean and subtidal flow on the New England shelf. J. Geophys. Res.,108, 3281, doi:10.1029/2002JC001417.

  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683.

  • Taylor, G. I., 1919: Tidal friction in the Irish Sea. Philos. Trans. Roy. Soc. London, A220, 133.

  • Thompson, R. O. R. Y., 1977: Observations of Rossby waves near site D1. Prog. Oceanogr.,7, 135–162, doi:10.1016/0079-6611(77)90003-9.

  • Uehara, K., and H. Miyake, 2000: Biweekly periodic deep flow variability on the slope inshore of the KurilKamchatka Trench. J. Phys. Oceanogr.,30, 3249–3260.

  • von Storch, J.-S., H. Sasaki, and J. Marotzke, 2007: Wind-generated power input to the deep ocean: An estimate using a 1/10° general circulation model. J. Phys. Oceanogr.,37, 657672.

    • Search Google Scholar
    • Export Citation
  • Wright, C., R. B. Scott, B. K. Arbic, and D. Furnival, 2012: Bottom dissipation of subinertial currents at the Atlantic zonal boundaries. J. Geophys. Res.,117, C03049, doi:10.1029/2011JC007702.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr.,28, 2332–2340.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech.,36, 281–314, doi:10.1146/annurev.fluid.36.050802.122121.

  • Xu, Y., and R. B. Scott, 2008: Subtleties in forcing eddy resolving ocean models with satellite wind data. Ocean Modell.,20, 240–251, doi:10.1016/j.ocemod.2007.09.003.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 46 6
PDF Downloads 581 35 3

Global Observations of Ocean-Bottom Subinertial Current Dissipation

Corwin J. WrightLaboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France

Search for other papers by Corwin J. Wright in
Current site
Google Scholar
PubMed
Close
,
Robert B. ScottLaboratoire de Physique des Océans, Université de Bretagne Occidentale, and CNRS, Brest, France, and Institute for Geophysics, The University of Texas at Austin, Austin, Texas

Search for other papers by Robert B. Scott in
Current site
Google Scholar
PubMed
Close
,
Darran FurnivalLaboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France

Search for other papers by Darran Furnival in
Current site
Google Scholar
PubMed
Close
,
Pierre AilliotLaboratoire de Mathématiques, (UMR CNRS 6205), Université de Bretagne Occidentale, Brest, France

Search for other papers by Pierre Ailliot in
Current site
Google Scholar
PubMed
Close
, and
Franck VermetLaboratoire de Mathématiques, (UMR CNRS 6205), Université de Bretagne Occidentale, Brest, France

Search for other papers by Franck Vermet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Quadratic bottom boundary layer drag is a potentially significant source of energy dissipation in the deep ocean. This study presents a new estimate of the energy dissipated by this process, using results from the world’s largest archive of ocean current meter time series and focusing strongly upon the potential uncertainties in this calculation. Two methods are used, one based on a simple division of the World Ocean into a series of regular grids and the other based on a more sophisticated analysis using a hierarchical clustering mechanism assisted by estimates from the Hybrid Coordinate Ocean Model (HYCOM) model. From these analyses, the authors estimate a globally integrated bottom boundary layer dissipation of 0.65 ± 0.15 (statistical uncertainty) ± 0.15 (methodological uncertainty) TW.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Corwin J. Wright, National Center for Atmospheric Research, Boulder, CO 80301. E-mail: corwin.wright@trinity.oxon.org

Abstract

Quadratic bottom boundary layer drag is a potentially significant source of energy dissipation in the deep ocean. This study presents a new estimate of the energy dissipated by this process, using results from the world’s largest archive of ocean current meter time series and focusing strongly upon the potential uncertainties in this calculation. Two methods are used, one based on a simple division of the World Ocean into a series of regular grids and the other based on a more sophisticated analysis using a hierarchical clustering mechanism assisted by estimates from the Hybrid Coordinate Ocean Model (HYCOM) model. From these analyses, the authors estimate a globally integrated bottom boundary layer dissipation of 0.65 ± 0.15 (statistical uncertainty) ± 0.15 (methodological uncertainty) TW.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Corwin J. Wright, National Center for Atmospheric Research, Boulder, CO 80301. E-mail: corwin.wright@trinity.oxon.org
Save