• Anderson, D. L. T., and P. D. Killworth, 1979: Non-linear propagation of long Rossby waves. Deep-Sea Res., 26, 10331050.

  • Aoki, S., and S. Imawaki, 1996: Eddy activities of the surface layer in the western North Pacific detected by satellite altimeter and radiometer. J. Oceanogr., 52, 457474.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., A. M. C. Hogg, and W. Dewar, 2007: The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr., 37, 23632386.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, and M. Garvert, 2010: Atmospheric sensitivity to SST near the Kuroshio Extension during the extratropical transition of Typhoon Tokage. Mon. Wea. Rev., 138, 26442663.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Ceballos, L. I., E. Di Lorenzo, C. D. Hoyos, N. Schneider, and B. Taguchi, 2009: North Pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Climate, 22, 51635174.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., G. Ierley, and W. Young, 1987: A model of the inertial recirculation driven by potential vorticity anomalies. J. Phys. Oceanogr., 17, 16401652.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238.

  • Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., L. Pratt, and E. Ralph, 1993: A general theory for equivalent barotropic thin jets. J. Phys. Oceanogr., 23, 91103.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 16971706.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P.-Y. Le Traon, 2001: A comparison of surface eddy kinetic energy and reynolds stresses in the Gulf Stream and the Kuroshio current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106 (C8), 16 60316 622.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Itoh, S., I. Yasuda, H. Nishikawa, H. Sasaki, and Y. Sasai, 2009: Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis Japonicus) and Japanese sardine (Sardinops Melanostictus) in the Western North Pacific estimated via numerical particle-tracking experiments. Fish. Oceanogr., 18, 118133.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and Coauthors, 2009: The Kuroshio Extension and its recirculation gyres. Deep-Sea Res. I, 56, 20882099.

  • Joyce, T. M., and J. Dunworth-Baker, 2003: Long-term hydrographic variability in the northwest Pacific Ocean. Geophys. Res. Lett., 30, 1043, doi:10.1029/2002GL015225.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • Kaplan, D., and L. Glass, 1995: Understanding Nonlinear Dynamics. Springer-Verlag, 420 pp.

  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20, 24162433.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio Systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1999: Forced planetary wave response in a thermocline gyre. J. Phys. Oceanogr., 29, 10361055.

  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean–atmosphere coupling. J. Climate, 17, 18591882.

    • Search Google Scholar
    • Export Citation
  • Lysne, J., and C. Deser, 2002: Wind-driven thermocline variability in the Pacific: A model–data comparison. J. Climate, 15, 829845.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., and Coauthors, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 2002: Interannual to interdecadal changes in the Bering Sea and concurrent 1998/99 changes over the North Pacific. Prog. Oceanogr., 55, 4564.

    • Search Google Scholar
    • Export Citation
  • Mizuno, K., and W. B. White, 1983: Annual and interannual variability in the Kuroshio Current System. J. Phys. Oceanogr., 13, 18471867.

    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2010: Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107, 18331837.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and I. Ishikawa, 2010: Meridional shift of the Kuroshio Extension induced by response of recirculation gyre to decadal wind variations. Deep-Sea Res., 57, 11111126.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., H. Tsujino, and R. Furue, 2008: The Kuroshio Current System as a jet and twin “relative” recirculation gyres embedded in the sverdrup circulation. Dyn. Atmos. Oceans, 45, 135164.

    • Search Google Scholar
    • Export Citation
  • Nishikawa, H., and I. Yasuda, 2008: Japanese sardine (Sardinops Melanostictus) mortality in relation to the winter mixed layer depth in the Kuroshio Extension region. Fish. Oceanogr., 17, 411420.

    • Search Google Scholar
    • Export Citation
  • Nishikawa, H., and I. Yasuda, 2011: Long-term variability of winter mixed layer depth and temperature along the Kuroshio jet in a high-resolution ocean general circulation model. J. Oceanogr., 67, 503518.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea-surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67, 375383.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19, 19701989.

    • Search Google Scholar
    • Export Citation
  • Oka, E., T. Suga, C. Sukigara, K. Toyama, K. Shimada, and J. Yoshida, 2011: “Eddy resolving” observation of the North Pacific Subtropical Mode Water. J. Phys. Oceanogr., 41, 666681.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., H. A. Dijkstra, and A. Riccio, 2009: A nonlinear theory of the Kuroshio Extension bimodality. J. Phys. Oceanogr., 39, 22122229.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Eddy–mean flow interaction in the decadally modulation Kuroshio Extension System. Deep-Sea Res., 57, 10981110.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2011: Effect of decadal Kuroshio Extension jet and eddy variability on the modification of North Pacific Intermediate Water. J. Phys. Oceanogr., 41, 503515.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., and F. Hernandez, 2004: A mean dynamic topography computed over the World Ocean from altimetry, in situ measurements, and a GEOID model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and N. Schneider, 2011a: Decadal shifts of the Kuroshio Extension jet: Application of thin-jet theory. J. Phys. Oceanogr., 41, 979993.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and N. Schneider, 2011b: Interannual to decadal Gulf Stream variability in an eddy-resolving ocean model. Ocean Modell., 39, 209219.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14, 39974002.

  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15, 586605.

  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal time scales. J. Climate, 14, 42494265.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2011: Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio–Oyashio confluence region: Influences of warm eddies detached from the Kuroshio Extension. J. Climate, 24, 65516561.

    • Search Google Scholar
    • Export Citation
  • Sura, P., and S. T. Gille, 2010: Stochastic dynamics of sea surface height variability. J. Phys. Oceanogr., 40, 15821596.

  • Taguchi, B., S.-P. Xie, H. Mitsudera, and A. Kubokawa, 2005: Response of the Kuroshio Extension to Rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J. Climate, 18, 29792995.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 65366560.

    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., and E. Demirov, 2006: Skewness of sea level variability of the world’s oceans. J. Geophys. Res., 111, C05005, doi:10.1029/2004JC002839.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988993.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. M. Bliss, 1932: World Weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wang, L., C. J. Koblinsky, and S. Howden, 1998: Annual and intra-annual sea level variability in the region of the Kuroshio Extension from TOPEX/Poseidon and Geosat altimetry. J. Phys. Oceanogr., 28, 692711.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., N. G. Hogg, and S. R. Jayne, 2011: Eddy–mean flow interaction in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208.

    • Search Google Scholar
    • Export Citation
  • Yatsu, A., T. Watanabe, M. Ishida, H. Sugisaki, and L. D. Jacobson, 2005: Environmental effects on recruitment and productivity of Japanese sardine Sardinops Melanostictus and chub mackerel Scomber Japonicus with recommendations for management. Fish. Oceanogr., 14, 263278.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 284 158 18
PDF Downloads 220 114 9

Decadal Response of the Kuroshio Extension Jet to Rossby Waves: Observation and Thin-Jet Theory

Yoshi N. SasakiGraduate School of Science, Hokkaido University, Sapporo, Japan

Search for other papers by Yoshi N. Sasaki in
Current site
Google Scholar
PubMed
Close
,
Shoshiro MinobeGraduate School of Science, Hokkaido University, Sapporo, Japan

Search for other papers by Shoshiro Minobe in
Current site
Google Scholar
PubMed
Close
, and
Niklas SchneiderIPRC, and Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Niklas Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines interannual to decadal variability of the Kuroshio Extension (KE) jet using satellite altimeter observations from 1993 to 2010. The leading empirical orthogonal function (EOF) mode of sea level variability in the KE region represents the meridional shift of the KE jet, followed by its strength changes with a few month lag. This shift of the KE jet lags atmospheric fluctuations over the eastern North Pacific by about three years. Broad sea level anomalies (SLAs) emerge in the eastern North Pacific 3–4 years before the upstream KE jet shift, and propagate westward along the KE jet axis. In the course of the propagation, the meridional scale of the SLAs gradually narrows, and their amplitude increases. This westward propagation of SLAs with a speed of about 5 cm s−1 is attributed to the westward propagation of the meridional shift of the jet, consistent with the thin-jet theory, whose importance has been suggested by previous numerical studies. In addition, the westward-propagating signals tend to conserve their quasigeostrophic potential vorticity anomaly, which may explain the characteristic changes of SLAs during the propagation. After the westward-propagating signals of positive (negative) SLAs reach at the east coast of Japan, the upstream KE jet strengthens (weakens) associated with the strength changes of the northern and southern recirculation gyres. Interestingly, this strength change of the KE jet propagates eastward with a speed of about 6 cm s−1, suggesting an importance of advection by the current.

International Pacific Research Center Publication Number 924 and School of Ocean and Earth Science and Technology Publication Number 8773.

Corresponding author address: Yoshi N. Sasaki, Science 8th Bldg., 8-3-20, Graduate School of Science, Hokkaido University, N10, W8, Sapporo, 060-0810, Japan. E-mail: sasakiyo@mail.sci.hokudai.ac.jp

Abstract

This study examines interannual to decadal variability of the Kuroshio Extension (KE) jet using satellite altimeter observations from 1993 to 2010. The leading empirical orthogonal function (EOF) mode of sea level variability in the KE region represents the meridional shift of the KE jet, followed by its strength changes with a few month lag. This shift of the KE jet lags atmospheric fluctuations over the eastern North Pacific by about three years. Broad sea level anomalies (SLAs) emerge in the eastern North Pacific 3–4 years before the upstream KE jet shift, and propagate westward along the KE jet axis. In the course of the propagation, the meridional scale of the SLAs gradually narrows, and their amplitude increases. This westward propagation of SLAs with a speed of about 5 cm s−1 is attributed to the westward propagation of the meridional shift of the jet, consistent with the thin-jet theory, whose importance has been suggested by previous numerical studies. In addition, the westward-propagating signals tend to conserve their quasigeostrophic potential vorticity anomaly, which may explain the characteristic changes of SLAs during the propagation. After the westward-propagating signals of positive (negative) SLAs reach at the east coast of Japan, the upstream KE jet strengthens (weakens) associated with the strength changes of the northern and southern recirculation gyres. Interestingly, this strength change of the KE jet propagates eastward with a speed of about 6 cm s−1, suggesting an importance of advection by the current.

International Pacific Research Center Publication Number 924 and School of Ocean and Earth Science and Technology Publication Number 8773.

Corresponding author address: Yoshi N. Sasaki, Science 8th Bldg., 8-3-20, Graduate School of Science, Hokkaido University, N10, W8, Sapporo, 060-0810, Japan. E-mail: sasakiyo@mail.sci.hokudai.ac.jp
Save