• Bender, M. A., , I. Ginis, , and Y. Kurihara, 1993: Numerical simulations of tropical cyclone–ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98 (D12), 2324523263.

    • Search Google Scholar
    • Export Citation
  • Boyer, T., , S. Levitus, , H. Garcia, , R. Locarnini, , C. Stephens, , and J. Antonov, 2005: Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. Int. J. Climatol., 25, 931945.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., , H. Lass, , V. Mohrholz, , L. Umlauf, , J. Sellschopp, , V. Fiekas, , K. Bolding, , and L. Arneborg, 2005: Dynamics of medium-intensity dense water plumes in the Arkona Sea, Western Baltic Sea. Ocean Dyn., 55, 391402.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W., , and R. A. Anthes, 1978: Numerical simulations of the ocean’s nonlinear, baroclinic responses to translating hurricanes. J. Phys. Oceanogr., 8, 468380.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., , V. M. Canuto, , and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 15501565.

  • Cheung, H. F., , J. Pan, , Y. Gu, , and Z. Wang, 2013: Remote sensing observation of ocean responses to the Typhoon Lupit in the Northwest Pacific. Int. J. Remote Sens., 34, 14781491, doi:10.1080/01431161.2012.721940.

    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., 1970: Linear theory of the responses of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249272.

  • Ginis, I., 2002: Tropical cyclone-ocean interactions. Atmosphere-Ocean Interactions, Advances in Fluid Mechanics Series, Vol. 1, No. 33, WIT Press, 83–114.

  • Ginis, I., , and K. Z. Dikinov, 1989: Modelling of the typhoon Virginia (1978) forcing on the ocean. Meteor. Hydrol., 7, 5360.

  • Greatbatch, R. J., 1983: On the response of the ocean to a moving storm: The nonlinear dynamics. J. Phys. Oceanogr., 13, 357367.

  • Jacob, S. D., , and L. K. Shay, 2003: The role of mesoscale features on the tropical cyclone–induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649676.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., , L. K. Shay, , A. J. Mariano, , and P. G. Black, 2000: The 3D mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., , R. Ferrari, , and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, doi:10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., , and S. G. Monismith, 2008: The influence of whitecapping waves on the vertical structure of turbulence in a shallow estuarine embayment. J. Phys. Oceanogr., 38, 15631580.

    • Search Google Scholar
    • Export Citation
  • Lin, I. I., , I.-F. Pun, , and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category-5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Miladinova, S., , and A. Stips, 2010: Sensitivity of oxygen dynamics in the water column of the Baltic Sea to external forcing. Ocean Sci., 6, 461474.

    • Search Google Scholar
    • Export Citation
  • Nam, S.-H., , D.-J. Kim, , and W. M. Moon, 2011: Observed impact of mesoscale circulation on oceanic response to Typhoon Man-Yi (2007). Ocean Dyn., 62, 112, doi:10.1007/s10236-011-0490-8.

    • Search Google Scholar
    • Export Citation
  • Nelson, N. B., 1998: Spatial and temporal extent of surface ocean modifications by hurricanes during the 1995 season. Mon. Wea. Rev., 126, 13641368.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper-ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175.

  • Reynolds, W. R., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., , P. Cornillon, , and J. F. Price, 1986: Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res., 91 (C4), 50315035.

    • Search Google Scholar
    • Export Citation
  • Tsai, Y., , C. S. Chern, , and J. Wang, 2008: The upper ocean response to a moving typhoon. J. Oceanogr., 64, 115130, doi:10.1007/s10872-008-0009-1.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y., , S. Jan, , D. E. Dietrich, , I. Lin, , Y. Chang, , and T. Tang, 2010: Modeled oceanic response and sea aurface cooling to Typhoon Kai-Tak. Terr. Atmos. Ocean. Sci., 21, 8598, doi:10.3319/TAO.2009.06.08.02(IWNOP).

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265.

  • Wada, A., 2005: Numerical simulations of sea surface cooling by a mixed layer model during the passage of Typhoon Rex. J. Oceanogr., 61, 4157.

    • Search Google Scholar
    • Export Citation
  • Walker, N. D., , R. R. Leben, , and S. Balasubramanian, 2005: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610, doi:10.1029/2005GL023716.

    • Search Google Scholar
    • Export Citation
  • Zedler, S. E., , T. D. Dickey, , S. C. Doney, , J. F. Price, , X. Yu, , and G. L. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Test bed Mooring site: 13–23 August 1995. J. Geophys. Res., 107, 3232, doi:10.1029/2001JC000969.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q., , C.-K. Tai, , J. Hu, , H. Lin, , R.-H. Zhang, , F.-C. Su, , and X. Yang, 2011: Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. J. Oceanogr., 67, 365376, doi:10.1007/s10872-011-0035-2.

    • Search Google Scholar
    • Export Citation
  • Zheng, Z. W., , C.-R. Ho, , and N.-J. Kuo, 2008: Importance of preexisting oceanic conditions to upper-ocean response induced by Super Typhoon Hai-Tang. Geophys. Res. Lett., 35, L20603, doi:10.1029/2008GL035524.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 394 394 49
PDF Downloads 188 188 19

Estimate of Ocean Mixed Layer Deepening after a Typhoon Passage over the South China Sea by Using Satellite Data

View More View Less
  • 1 Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The ocean responses to Typhoon Cimaron, which influenced the South China Sea (SCS) from 1 to 8 November 2006, are analyzed. Based on satellite-observed sea surface temperature (SST) and climatological temperature profiles in the SCS, mixed layer deepening, an important parameter characterizing turbulent mixing and upwelling driven by strong typhoon winds, is derived. Corresponding to the SST drop of 4.4°C on 3 November 2006, the mixed layer deepened by 104.5 m relative to the undisturbed depth of 43.2 m, which is consistent with a simulation result from a mixed layer model. Furthermore, baroclinic geostrophic velocity and vorticity are calculated from the surface temperature gradient caused by the typhoon. The negative vorticity, associated with the typhoon cooling, indicated an anticyclonic baroclinic circulation strongest at the base of the mixed layer and at the depth of 50 m, the geostrophic speed reached as high as 0.2 m s−1. Typhoon Cimaron proceeded slowly (1.7 m s−1) when it was making a southwestward turn on 3 November 2006, resulting in a subcritical condition with a Froude number (the ratio of typhoon translation speed to first baroclinic mode speed) of 0.6 around the maximum SST drop location and facilitating high SST cooling and mixed layer deepening because of the absence of inertial-gravity waves in the wake of the typhoon. Comparison of Argo buoy data with the climatological temperature suggests that the average uncertainty in the mixed layer deepening estimation caused by the difference between Argo and climatological temperature profiles is less than 10 m.

Corresponding author address: Jiayi Pan, Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China. E-mail: panj@cuhk.edu.hk

Abstract

The ocean responses to Typhoon Cimaron, which influenced the South China Sea (SCS) from 1 to 8 November 2006, are analyzed. Based on satellite-observed sea surface temperature (SST) and climatological temperature profiles in the SCS, mixed layer deepening, an important parameter characterizing turbulent mixing and upwelling driven by strong typhoon winds, is derived. Corresponding to the SST drop of 4.4°C on 3 November 2006, the mixed layer deepened by 104.5 m relative to the undisturbed depth of 43.2 m, which is consistent with a simulation result from a mixed layer model. Furthermore, baroclinic geostrophic velocity and vorticity are calculated from the surface temperature gradient caused by the typhoon. The negative vorticity, associated with the typhoon cooling, indicated an anticyclonic baroclinic circulation strongest at the base of the mixed layer and at the depth of 50 m, the geostrophic speed reached as high as 0.2 m s−1. Typhoon Cimaron proceeded slowly (1.7 m s−1) when it was making a southwestward turn on 3 November 2006, resulting in a subcritical condition with a Froude number (the ratio of typhoon translation speed to first baroclinic mode speed) of 0.6 around the maximum SST drop location and facilitating high SST cooling and mixed layer deepening because of the absence of inertial-gravity waves in the wake of the typhoon. Comparison of Argo buoy data with the climatological temperature suggests that the average uncertainty in the mixed layer deepening estimation caused by the difference between Argo and climatological temperature profiles is less than 10 m.

Corresponding author address: Jiayi Pan, Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China. E-mail: panj@cuhk.edu.hk
Save