• Bryden, H. L., 1976: Horizontal advection of temperature for low-frequency motions. Deep-Sea Res., 23, 11651174.

  • Bryden, H. L., 1979: Poleward heat flux and conversion of available potential energy in Drake Passage. J. Mar. Res., 37, 122.

  • Bryden, H. L., , and R. A. Heath, 1985: Energic eddies at the northern edge of the Antarctic Circumpolar Current in the southwest Pacific. Prog. Oceanogr., 14, 6587.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., , L. D. Talley, , and M. R. Mazloff, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., , and D. R. Watts, 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., , and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A, 10571085.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , C. Provost, , A. Renault, , N. Sennéchael, , N. Barré, , Y.-H. Park, , and J.-H. Lee, 2012: Circulation in Drake Passage revisited using new current time-series and satellite altimetry. J. Geophys. Res., 117, C12024, doi:10.1029/2012JC008264.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2003: Float observations of the Southern Ocean. Part II: Eddy fluxes. J. Phys. Oceanogr., 33, 11821196.

  • Gordon, A. L., , and W. B. Owens, 1987: Polar oceans. Rev. Geophys., 25, 227233.

  • Hall, M. M., 1986: Horizontal and vertical structure of the Gulf Stream velocity field at 68°W. J. Phys. Oceanogr., 16, 18141828.

  • Hall, M. M., 1989: Velocity and transport structure of the Kuroshio Extension at 35°N, 152°E. J. Geophys. Res., 94 (C10), 14 44514 459.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1982: On meridional heat transport in the world ocean. J. Phys. Oceanogr., 12, 922927.

  • Hogg, N. G., 1986: On the correction of temeperature and velocity time series for mooring motion. J. Atmos. Oceanic Technol., 3, 204214.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1991: Mooring motion corrections revisited. J. Atmos. Oceanic Technol., 8, 289295.

  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, doi:10.1029/2004JC002753.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , and B. A. de Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torque. J. Phys. Oceanogr., 31, 28712885.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1992: An equivalent-barotropic mode in the fine resolution Antarctic model. J. Phys. Oceanogr., 22, 13791387.

  • Killworth, P. D., , and C. W. Hughes, 2002: The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res., 60, 1945.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Lindstrom, S. S., , and D. R. Watts, 1994: Vertical motion in the Gulf Stream near 68°W. J. Phys. Oceanogr., 24, 23212333.

  • Lindstrom, S. S., , X. Qian, , and D. R. Watts, 1997: Vertical motion in the Gulf Stream and its relation to meanders. J. Geophys. Res., 102, 84858503.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., , P. Heimbach, , and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880898.

  • Meijers, A. J., , N. L. Bindoff, , and J. L. Roberts, 2007: On the total, mean, and eddy heat and freshwater transports in the Southern Hemisphere of a ⅛° × global ocean model. J. Phys. Oceanogr., 37, 277295.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., Jr., , S. J. Worley, , and T. Whitworth III, 1985: Methods for making point estimates of eddy heat flux as applied to the Antarctic Circumpolar Current. J. Geophys. Res., 90, 33053324.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , D. Borowski, , C. Völker, , and J.-O. Wölff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., , and L. Gambéroni, 1995: Large-scale circulation and its variability in the south Indian Ocean from TOPEX/Poseidon altimetry. J. Geophys. Res., 100, 24 91124 929.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., , L. Gambéroni, , and E. Charriaud, 1993: Frontal structure, water masses and circulation in the Crozet Basin. J. Geophys. Res., 98, 12 36112 385.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., , E. Charriaud, , and M. Fieux, 1998: Thermohaline structure of the Antarctic Surface Water/Winter Water in the Indian sector of the Southern Ocean. J. Mar. Syst., 17, 523.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., , F. Roquet, , I. Durand, , and J. L. Fuda, 2008: Large scale circulation over and around the Northern Kerguelen Plateau. Deep-Sea Res. II, 55, 566581, doi:10.1016/j.dsr2.2007.12.030.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., , F. Vivier, , F. Roquet, , and E. Kestenare, 2009: Direct observation of the ACC transport across the Kerguelen Plateau. Geophys. Res. Lett., 36, L18603, doi:10.1029/2009GL039617.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Phillips, H. E., , and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., , C. W. Hughes, , and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J.Gould, Eds., Academic Press, 271–302.

  • Roquet, F., , Y.-H. Park, , C. Guinet, , F. Bailleul, , and J. B. Charrassin, 2009: Observations of the Fawn Trough Current over the Kerguelen Plateau using the data from instrumented elephant seals. J. Mar. Syst., 78, 377393.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transport, and mean flow properties. J. Phys. Oceanogr., 28, 727739.

  • Sun, C., , and D. R. Watts, 2002: Heat flux carried by the Antarctic Circumpolar Current mean flow. J. Geophys. Res., 107, 3119, doi:10.1029/2001JC001187.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , M. England, , S. R. Rintoul, , G. Madec, , J. Le Sommer, , and J.-M. Molines, 2007: Southern Ocean overturning across streamlines in an edding simulation of the Antarctic Circumpolar Current. Ocean Sci. Discuss, 4, 653698.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., , and C. Provost, 1999: Direct velocity measurements in the Malvinas Current. J. Geophys. Res., 104, 21 08321 103.

  • Volkov, D. L., , L.-L. Fu, , and T. Lee, 2010: Mechanisms of the meridional heat transport in the Southern Ocean. Ocean Dyn., 60, 791801.

    • Search Google Scholar
    • Export Citation
  • Walkden, G. J., , K. J. Heywood, , and D. P. Stevens, 2008: Eddy heat fluxes from direct current measurements of the Antarctic Polar Front in Shag Rocks Passage. Geophys. Res. Lett., 35, L06602, doi:10.1029/2007GL032767.

    • Search Google Scholar
    • Export Citation
  • Wells, N. C., , and B. A. de Cuevas, 1995: Depth-integrated vorticity budget of the Southern Ocean from a general circulation model. J. Phys. Oceanogr., 25, 25692582.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 9
PDF Downloads 32 32 4

Time-Mean Flow as the Prevailing Contribution to the Poleward Heat Flux across the Southern Flank of the Antarctic Circumpolar Current: A Case Study in the Fawn Trough, Kerguelen Plateau

View More View Less
  • 1 LOCEAN/MNHN/IPSL, Muséum National d’Histoire Naturelle, Paris, France
  • | 2 LOCEAN/CNRS/IPSL, Université Pierre et Marie Curie, Paris, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The major mechanisms of the oceanic poleward heat flux in the Southern Ocean are still in debate. The long-standing belief stipulates that the poleward heat flux across the Antarctic Circumpolar Current (ACC) is mainly due to mesoscale transient eddies and the cross-stream heat flux by time-mean flow is insignificant. This belief has recently been challenged by several numerical modeling studies, which stress the importance of mean flow for the meridional heat flux in the Southern Ocean. Here, this study analyzes moored current meter data obtained recently in the Fawn Trough, Kerguelen Plateau, to estimate the cross-stream heat flux caused by the time-mean flow and transient eddies. It is shown that the poleward eddy heat flux in this southern part of the ACC is negligible, while that from the mean flow is overwhelming by two orders of magnitude. This is due to the unusual anticlockwise turning of currents with decreasing depth, which is associated with significant bottom upwelling engendered by strong bottom currents flowing over the sloping topography of the trough. The circumpolar implications of these local observations are discussed in terms of the depth-integrated linear vorticity budget, which suggests that the six topographic features along the southern flank of the ACC equivalent to the Fawn Trough case would yield sufficient poleward heat flux to balance the oceanic heat loss in the subpolar region. As eddy activity on the southern flank of the ACC is too weak to transport sufficient heat poleward, the nonequivalent barotropic structure of the mean flow in several topographically constricted passages should accomplish the required task.

Corresponding author address: Young-Hyang Park, LOCEAN/USM402, Département Milieux et Peuplements Aquatiques, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, F-75231, Paris CEDEX 05, France. E-mail: yhpark@mnhn.fr

Abstract

The major mechanisms of the oceanic poleward heat flux in the Southern Ocean are still in debate. The long-standing belief stipulates that the poleward heat flux across the Antarctic Circumpolar Current (ACC) is mainly due to mesoscale transient eddies and the cross-stream heat flux by time-mean flow is insignificant. This belief has recently been challenged by several numerical modeling studies, which stress the importance of mean flow for the meridional heat flux in the Southern Ocean. Here, this study analyzes moored current meter data obtained recently in the Fawn Trough, Kerguelen Plateau, to estimate the cross-stream heat flux caused by the time-mean flow and transient eddies. It is shown that the poleward eddy heat flux in this southern part of the ACC is negligible, while that from the mean flow is overwhelming by two orders of magnitude. This is due to the unusual anticlockwise turning of currents with decreasing depth, which is associated with significant bottom upwelling engendered by strong bottom currents flowing over the sloping topography of the trough. The circumpolar implications of these local observations are discussed in terms of the depth-integrated linear vorticity budget, which suggests that the six topographic features along the southern flank of the ACC equivalent to the Fawn Trough case would yield sufficient poleward heat flux to balance the oceanic heat loss in the subpolar region. As eddy activity on the southern flank of the ACC is too weak to transport sufficient heat poleward, the nonequivalent barotropic structure of the mean flow in several topographically constricted passages should accomplish the required task.

Corresponding author address: Young-Hyang Park, LOCEAN/USM402, Département Milieux et Peuplements Aquatiques, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, F-75231, Paris CEDEX 05, France. E-mail: yhpark@mnhn.fr
Save