• Alpers, W., 1983: Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra. J. Geophys. Res., 88 (C3), 17451759.

    • Search Google Scholar
    • Export Citation
  • Alpers, W., , D. B. Ross, , and C. L. Rufenach, 1981: On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res., 86 (C7), 64816498.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., , and O. M. Phillips, 1974: On the incipient breaking of small scale waves. J. Fluid Mech., 65, 647656.

  • Banner, M. L., , and D. H. Peregrine, 1993: Wave breaking in deep water. Annu. Rev. Fluid Mech., 25, 373397.

  • Banner, M. L., , I. S. F. Jones, , and J. C. Trinder, 1989: Wavenumber spectra of short gravity waves. J. Fluid Mech., 198, 321344.

  • Banner, M. L., , A. V. Babanin, , and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30, 31453160.

    • Search Google Scholar
    • Export Citation
  • Bao, M., , W. Alpers, , and C. Brüning, 1999: A new nonlinear integral transform relating ocean wave spectra to phase image spectra of an along-track interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 37, 461466.

    • Search Google Scholar
    • Export Citation
  • Carande, R. E., 1994: Estimating ocean coherence time using dual-baseline interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 32, 846854.

    • Search Google Scholar
    • Export Citation
  • Castelle, B., , V. Marieu, , G. Coco, , P. Bonneton, , N. Bruneau, , and B. G. Ruessink, 2012: On the impact of an offshore bathymetric anomaly on surf zone rip channels. J. Geophys. Res., 117, F01038, doi: 10.1029/2011JF002141.

    • Search Google Scholar
    • Export Citation
  • Cox, C. S., , and W. Munk, 1954: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198227.

  • Cutrona, L. J., 1970: Synthetic aperture radar. Radar Handbook, M. I. Skolnik, Ed., McGraw-Hill, Inc., 23.1–23.25.

  • Dalrymple, R. A., , J. H. MacMahan, , A. J. H. M. Reniers, , and V. Nelko, 2011: Rip currents. Annu. Rev. Fluid Mech., 43, 551581.

  • Dean, R. G., , and R. A. Dalrymple, 1991: Water Wave Mechanics for Engineers and Scientists. World Scientific Publishers, 353 pp.

  • Dold, J. W., , and D. H. Peregrine, 1986: Water-wave modulation. Proc. 20th Int. Conf. Coastal Eng., Taipei, Taiwan, ASCE, 163–175.

  • Felizardo, F., , and W. K. Melville, 1995: Correlations between ambient noise and the ocean surface wave field. J. Phys. Oceanogr., 25, 513532.

    • Search Google Scholar
    • Export Citation
  • Franceschetti, G., , and R. Lanari, 1999: Synthetic Aperture Radar Processing. CRC Press, 307 pp.

  • Frasier, S. J., , Y. Liu, , and R. E. McIntosh, 1998: Space-time properties of radar sea spikes and their relation to wind and wave conditions. J. Geophys. Res., 103 (C9), 18 74518 757.

    • Search Google Scholar
    • Export Citation
  • Goldstein, R. M., , and H. A. Zebker, 1987: Interferometric radar measurement of ocean surface currents. Nature, 328, 707709.

  • Goldstein, R. M., , T. P. Barnett, , and H. A. Zebker, 1989: Remote sensing of ocean currents. Science, 246, 12821285.

  • Goldstein, R. M., , F. Li, , J. Smith, , R. Pinkel, , and T. P. Barnett, 1994: Remote sensing of ocean waves: The surface wave process program experiment. J. Geophys. Res., 99, 79457950.

    • Search Google Scholar
    • Export Citation
  • Graber, H. C., , D. R. Thompson, , and R. E. Carande, 1996: Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar. J. Geophys. Res., 101, 25 81325 832.

    • Search Google Scholar
    • Export Citation
  • Harger, R. O., 1970: Synthetic Aperture Radar Systems. Academic Press, 240 pp.

  • Hasselmann, K., , and S. Hasselmann, 1991: On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res., 96 (C6) 10 71310 729.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., , R. K. Raney, , W. J. Plant, , W. Alpers, , R. A. Shuchman, , D. R. Lyzenga, , C. L. Rufenach, , and M. J. Tucker, 1985: Theory of synthetic aperture radar ocean imaging: A MARSEN view. J. Geophys. Res., 90 (C3) 46594686.

    • Search Google Scholar
    • Export Citation
  • He, Y., , and W. Alpers, 2003: On the nonlinear integral transform of an ocean wave spectrum into an along-track interferometric synthetic aperture radar image spectrum. J. Geophys. Res., 108, 3205, doi:10.1029/2002JC001560.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., , S. R. Long, , and L. F. Bliven, 1981: On the importance of the significant slope in empirical wind-wave studies. J. Phys. Oceanogr., 11, 569571.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2007: Spectral signature of wave breaking in surface wave components of intermediate length scale. J. Mar. Syst., 66, 2837, doi:10.1016/j.jmarsys.2005.11.015.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2009: Estimating the effective energy transfer velocity at air-sea interface. J. Geophys. Res., 114, C11011, doi:10.1029/2009JC005497.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , and D. W. Wang, 2004: An empirical investigation of source term balance of small scale surface waves. Geophys. Res. Lett., 31, L15301, doi:10.1029/2004GL020080.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res., 113, C02012, doi:10.1029/2007JC004277.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , D. Xu, , and J. Wu, 1989: Breaking of wind-generated waves: Measurements and characteristics. J. Fluid Mech., 202, 177200.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , D. W. Wang, , E. J. Walsh, , W. B. Krabill, , and R. N. Swift, 2000: Airborne measurements of the directional wavenumber spectra of ocean surface waves. Part I: Spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr., 30, 27532767.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , J. V. Toporkov, , M. A. Sletten, , D. Lamb, , and D. Perkovic, 2006: An experimental investigation of wave measurements using a dual-beam interferometer: Gulf Stream as a surface wave guide. J. Geophys. Res., 111, C09014, doi:10.1029/2006JC003482.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , M. A. Sletten, , and J. V. Toporkov, 2008: Analysis of radar sea return for breaking wave investigation. J. Geophys. Res., 113, C02003, doi:10.1029/2007JC004319.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , M. A. Sletten, , and J. V. Toporkov, 2010: A note on Doppler processing of coherent radar backscatter from the water surface: With application to ocean surface wave measurements. J. Geophys. Res., 115, C03026, doi:10.1029/2009JC005870.

    • Search Google Scholar
    • Export Citation
  • Kasilingam, D. P., , and O. H. Shemdin, 1988: Theory for synthetic aperture radar imaging of the ocean surface: With application to the Tower Ocean Wave and Radar Dependence Experiment on focus, resolution, and wave height spectra. J. Geophys. Res., 93 (C11), 13 83713 848.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1985: Acceleration in steep gravity waves. J. Phys. Oceanogr., 15, 15701579.

  • Longuet-Higgins, M. S., , and N. D. Smith, 1983: Measurement of breaking by a surface jump meter. J. Geophys. Res., 88 (C14), 98239831.

    • Search Google Scholar
    • Export Citation
  • Lyzenga, D. R., , and J. R. Bennet, 1991: Estimation of ocean wave spectra using two-antenna SAR systems. IEEE Trans. Geosci. Remote Sens., 29, 19952002.

    • Search Google Scholar
    • Export Citation
  • Lyzenga, D. R., , and N. P. Malinas, 1996: Azimuth falloff effects in two-antenna SAR measurements of ocean wave spectra. IEEE Trans. Geosci. Remote Sens., 34, 10201028.

    • Search Google Scholar
    • Export Citation
  • Marom, M., , R. M. Goldstein, , E. B. Thornton, , and L. Shemer, 1990: Remote sensing of ocean wave spectra by interferometric synthetic aperture radar. Nature, 345, 793795.

    • Search Google Scholar
    • Export Citation
  • Marom, M., , L. Shemer, , and E. B. Thornton, 1991: Energy density directional spectra of a nearshore wave field measured by interferometric synthetic aperture radar. J. Geophys. Res., 96 (C12), 22 12522 134.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr., 14, 14251433.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., , and M. L. Banner, 1974: Wave breaking in the presence of wind drift and swell. J. Fluid Mech., 66, 625640.

  • Plant, W. J., , and W. C. Keller, 1983: The two-scale radar wave probe and SAR imagery of the ocean. J. Geophys. Res., 88, 97769784.

  • Plant, W. J., , E. A. Terray, , R. A. Petitt, , and W. C. Keller, 1994: The dependence of microwave backscatter from the sea on illuminated area: Correlation times and lengths. J. Geophys. Res., 99, 97059723.

    • Search Google Scholar
    • Export Citation
  • Romeiser, R., , and D. R. Thompson, 2000: Numerical study on the along-track interferometric radar imaging mechanism of ocean surface currents. IEEE Trans. Geosci. Remote Sens., 38, 446458.

    • Search Google Scholar
    • Export Citation
  • Rosen, P. A., , S. Hensley, , I. R. Joughin, , F. K. Li, , S. N. Madsen, , E. Rodriguez, , and R. M. Goldstein, 2000: Synthetic aperture radar interferometry. Proc. IEEE, 88, 333382.

    • Search Google Scholar
    • Export Citation
  • Sletten, M. A., 2006: An analysis of gradient-induced distortion in ATI-SAR imagery of surface currents. IEEE Trans. Geosci. Remote Sens., 44, 19952002.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , M. A. Donelan, , Y. C. Agrawal, , W. M. Drennan, , K. K. Kahma, , A. J. Williams, , P. A. Hwang, , and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., , and J. R. Jensen, 1993: Synthetic aperture radar interferometry applied to ship-generated internal waves in the 1989 Loch Linnhe Experiment. J. Geophys. Res., 98 (C6), 10 25910 269.

    • Search Google Scholar
    • Export Citation
  • Tiessen, M. C. H., , N. Dodd, , and R. Gamier, 2011: Development of crescentic bars for a periodically perturbed initial bathymetry. J. Geophys. Res., 116, F04016, 10.1029/2011JF002069.

    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1973: Local balance in the air–sea boundary processes. Part III: On the spectrum of wind waves. J. Phys. Oceanogr., 3, 579593.

    • Search Google Scholar
    • Export Citation
  • Toporkov, J., , D. Perkovic, , G. Farquharson, , M. A. Sletten, , and S. J. Frasier, 2005: Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration. IEEE Trans. Geosci. Remote Sens., 43, 24942502.

    • Search Google Scholar
    • Export Citation
  • Vachon, P. W., , J. W. M. Campbell, , A. L. Gray, , and F. W. Dobson, 1999: Validation of along-track interferometric SAR measurements of ocean surface waves. IEEE Trans. Geosci. Remote Sens., 37, 150162.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., , D. W. Hancock, , D. E. Hines, , R. N. Swift, , and J. F. Scott, 1985: Directional wave spectra measured with the surface contour radar. J. Phys. Oceanogr., 15, 566592.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., , D. W. Hancock, , D. E. Hines, , R. N. Swift, , and J. F. Scott, 1989: An observation of the directional wave spectrum evolution from shoreline to fully developed. J. Phys. Oceanogr., 19, 670690.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., , W. Perrie, , and Y. He, 2009: Remote sensing of ocean waves by along-track interferometric synthetic aperture radar. J. Geophys. Res., 114, C10015, doi:10.1029/2009JC005310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 9
PDF Downloads 72 72 2

Mapping Surface Currents and Waves with Interferometric Synthetic Aperture Radar in Coastal Waters: Observations of Wave Breaking in Swell-Dominant Conditions

View More View Less
  • 1 Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Airborne and spaceborne interferometric synthetic aperture radars (InSARs) produce surface velocity measurements at very high spatial resolutions over a large area. The data allow construction of the velocity strain field for highlighting ocean surface processes such as wave breaking and rip currents. Also, coherence between signals from two interferometric channels is a descriptor of the correlation condition of the surface roughness that scatters back the radar signals and it is an indication of the ocean surface turbulence. Wave breaking is a major turbulence source causing surface roughness decorrelation, thus the coherence parameter serves as an independent means for detecting wave breaking. The results of breaking detection using roughness decorrelation and critical local acceleration are comparable. In this paper, the breaking fraction in swell-dominant mixed seas along a cross-shore transect is compared with several steepness parameters characterizing different length scales of surface waves. The highest correlation coefficient (from 0.90 to 0.99) is between the breaking fraction and windsea mean square slope contributed primarily by short waves. This result reinforces the previous field observations showing that the length scales of breaking waves are much shorter than the energetic components near the spectral peak, although dominant waves and the associated wave group modulation are important in triggering the breaking process. The large spatial coverage of airborne or spaceborne operation further offers the opportunity to investigate evolution of the surface wave spectrum in high spatial (subkilometer) resolution. This capability is very useful for monitoring the coastal wave and current environment.

U.S. Naval Research Laboratory Contribution Number JA/7260—12-0187.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil

Abstract

Airborne and spaceborne interferometric synthetic aperture radars (InSARs) produce surface velocity measurements at very high spatial resolutions over a large area. The data allow construction of the velocity strain field for highlighting ocean surface processes such as wave breaking and rip currents. Also, coherence between signals from two interferometric channels is a descriptor of the correlation condition of the surface roughness that scatters back the radar signals and it is an indication of the ocean surface turbulence. Wave breaking is a major turbulence source causing surface roughness decorrelation, thus the coherence parameter serves as an independent means for detecting wave breaking. The results of breaking detection using roughness decorrelation and critical local acceleration are comparable. In this paper, the breaking fraction in swell-dominant mixed seas along a cross-shore transect is compared with several steepness parameters characterizing different length scales of surface waves. The highest correlation coefficient (from 0.90 to 0.99) is between the breaking fraction and windsea mean square slope contributed primarily by short waves. This result reinforces the previous field observations showing that the length scales of breaking waves are much shorter than the energetic components near the spectral peak, although dominant waves and the associated wave group modulation are important in triggering the breaking process. The large spatial coverage of airborne or spaceborne operation further offers the opportunity to investigate evolution of the surface wave spectrum in high spatial (subkilometer) resolution. This capability is very useful for monitoring the coastal wave and current environment.

U.S. Naval Research Laboratory Contribution Number JA/7260—12-0187.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil
Save