• Behrenfeld, M. J., , and E. Boss, 2006: Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. J. Mar. Res., 64, 431451.

    • Search Google Scholar
    • Export Citation
  • Bianchi, A. A., , A. R. Piolaa, , and G. J. Collinoa, 2002: Evidence of double diffusion in the Brazil–Malvinas confluence. Deep-Sea Res., 49, 4152.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., , D. Halpern, , A. Huyer, , and R. L. Smith, 1983: The physical environment of the Peruvian upwelling system. Prog. Oceanogr., 12, 285305.

    • Search Google Scholar
    • Export Citation
  • Capet, X., , J. C. McWilliams, , M. J. Molemaker, , and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943.

    • Search Google Scholar
    • Export Citation
  • Capet, X., , J. C. McWilliams, , M. J. Molemaker, , and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., , A. Gizolme, , and C. Grados, 2008a: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatiotemporal patterns. Prog. Oceanogr., 79, 106119.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., , O. Pizarro, , and W. Rojas, 2008b: Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett., 35, L13603, doi:10.1029/2008GL034060.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., , G. Eldin, , and B. Dewitte, 2009: Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog. Oceanogr., 83, 117123.

    • Search Google Scholar
    • Export Citation
  • Chavez, F., , A. Bertrand, , R. Guevara-Carrasco, , P. Soler, , and J. Csirkef, 2008: The northern Humboldt current system: Brief history, present status and a view towards the future. Prog. Oceanogr., 79, 95105.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., , C. E. Eriksen, , and C. P. Jones, 2002: Autonomous buoyancy-driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths, Ed., Taylor and Francis, 37–58.

  • Echevin, V., , F. Colas, , A. Chaigneau, , and P. Penven, 2011: Sensitivity of the northern Humboldt current system nearshore modeled circulation to initial and boundary conditions. J. Geophys. Res., 116, C07002, doi:10.1029/2010JC006684.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., 1981: Thermally driven wind variability in the planetary boundary layer above Lima, Peru. J. Geophys. Res., 86 (C3), 20052016.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., , and M. Visbeck, 1993: Deep velocity profiling with self-contained ADCP. J. Atmos. Oceanic Technol., 10, 764773.

  • Giordani, H., , L. Prieur, , and G. Caniaux, 2006: Advanced insights into sources of vertical velocity in the ocean. Ocean Dyn., 56, 513524, doi:10.1007/s10236-005-0050-1.

    • Search Google Scholar
    • Export Citation
  • Gould, J., and Coauthors, 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85, 19, doi:10.1029/2004EO190002.

    • Search Google Scholar
    • Export Citation
  • Gourdeau, L., , W. S. Kessler, , R. E. Davis, , J. Sherman, , C. Maes, , and E. Kestenare, 2008: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. J. Phys. Oceanogr., 38, 715725.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , I. Draghici, , and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138.

  • Huyer, A., 1980: The offshore structure and subsurface expression of sea level variations off Peru, 1976/77. J. Phys. Oceanogr., 10, 17551768.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., , M. Knoll, , T. Paluskiewicz, , and R. L. Smith, 1991: The Peru undercurrent: A study in variability. Deep-Sea Res., 38 (Suppl. 1), S247S271.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., , D. L. Rudnick, , and E. Palls-Sanz, 2011: Elevated mixing at a front. J. Geophys. Res., 116, C11033, doi:10.1029/2011JC007192.

    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., , H. J. S. Fernando, , A. E. Gargett, , J. Tanny, , and E. Özsoy, 2003: The diffusive regime of double-diffusive convection. Prog. Oceanogr., 56, 461481.

    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., , P. Niiler, , A. Warn-Varnas, , and S. Piacsek, 1994: Wind-driven secondary circulation in ocean mesoscale. J. Mar. Res., 52, 371396.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., , and D. C. Chapman, 2004: The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 24442457.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., , and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256.

    • Search Google Scholar
    • Export Citation
  • May, B. D., , and D. E. Kelley, 1997: Effect of baroclinicity on double-diffusive interleaving. J. Phys. Oceanogr., 27, 19972008.

  • McDougall, T. J., , and B. R. Ruddick, 1992: The use of ocean microstructure to quantify both turbulent mixing and salt-fingering. Deep-Sea Res., 39 (11–12), 19311952.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , F. Colas, , and M. J. Molemaker, 2009: Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett., 36, L18602, doi:10.1029/2009GL039402.

    • Search Google Scholar
    • Export Citation
  • Nandi, P., , W. S. Holbrook, , S. Pearse, , P. Páramo, , and R. W. Schmitt, 2004: Seismic reflection imaging of water mass boundaries in the Norwegian Sea. Geophys. Res. Lett., 31, L23311, doi:10.1029/2004GL021325.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 1969: On the Ekman divergence in an oceanic jet. J. Geophys. Res., 74, 70487052.

  • Paduan, J. D., , and P. P. Niiler, 1990: A Lagrangian description of motion in northern California coastal transition filaments. J. Geophys. Res., 95 (C10), 18 09518 109.

    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., , T. M. S. Johnston, , and D. L. Rudnick, 2010: Frontal dynamics in a California Current system shallow front. Part I: Frontal processes and tracer structure. J. Geophys. Res., 115, C12067, doi:10.1029/2009JC006032.

    • Search Google Scholar
    • Export Citation
  • Pastor, M. V., , J. L. Pelegri, , A. Hernandez-Guerra, , J. Font, , J. Salat, , and M. Emelianov, 2008: Water and nutrient fluxes off northwest Africa. Cont. Shelf Res., 28, 915–936,

    • Search Google Scholar
    • Export Citation
  • Penven, P., , V. Echevin, , J. Pasapera, , F. Colas, , and J. Tam, 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current system: A modeling approach. J. Geophys. Res., 110, C10021, doi:10.1029/2005JC002945.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., , and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22, 609625.

  • Ruddick, B., 1983: A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Res., 30 (10A), 11051107.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., , and K. Richards, 2003: Oceanic thermohaline intrusions: observations. Prog. Oceanogr., 56, 499527, doi:10.1016/S0079-6611(03)00028-4.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 1996: Intensive surveys of the Azores front. 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101 (C7), 16 29116 303.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., , R. E. Davis, , C. C. Eriksen, , D. M. Fratantoni, , and M. J. Perry, 2004: Underwater gliders for ocean research. Mar. Tech. J., 38, 4859.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1994: Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26, 255–285.

  • Schneider, W., , R. Fuenzalida, , E. Rodriguez-Rubio, , and J. Garcés-Vargas, 2003: Characteristics and formation of eastern South Pacific intermediate water. Geophys. Res. Lett., 30, 1581, doi:10.1029/2003GL017086.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., , M. C. Gregg, , M. H. Alford, , and R. R. Harcourt, 2009: Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone. J. Phys. Oceanogr., 39, 27352756.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., , M. C. Gregg, , M. H. Alford, , and R. R. Harcourt, 2010: Three-dimensional structure and temporal evolution of submesoscale thermohaline intrusions in the North Pacific subtropical frontal zone. J. Phys. Oceanogr., 40, 16691689.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., , and R. Ferrari, 2009: The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr., 39, 24772501.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., 1981: A comparison of the structure and variability of the flow field in three coastal upwelling regions: Oregon, northwest Africa, and Peru. Coastal Upwelling, F. A. Richards, Ed., Amer. Geophys. Union, 107–118.

  • Spall, M. A., 1995: Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res., 100 (C2), 355367.

  • St. Laurent, L., , and R. W. Schmitt, 1998: The contribution of salt fingers to vertical mixing in the North Atlantic tracer release experiment. J. Phys. Oceanogr., 29, 14041424.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1965: Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res., 12, 25432557.

  • Strub, P., , J. Mesias, , V. Montecino, , J. Ruttlant, , and S. Salinas, 1998: Coastal ocean circulation off western South America. The Sea: The Global Coastal Ocean, A. Robinson and K. Brink, Eds., Regional Studies and Syntheses, Vol. 11, J. Wiley and Sons, 273–313.

  • Testor, P., and Coauthors, 2010: Gliders as a component of future observing systems. Proc. OceanObs09: Sustained Ocean Observations and Information for Society, Vol. 2, Venice, Italy, ESA, WPP-306. [Available online at http://www.oceanobs09.net/proceedings/cwp/cwp89/.]

  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466.

  • Thomas, L. N., , and P. B. Rhines, 2002: Nonlinear stratified spin-up. J. Fluid Mech., 473, 211244.

  • Thomas, L. N., , and C. M. Lee, 2005: Intensification of ocean fronts by downfront winds. J. Phys. Oceanogr., 35, 10861102.

  • Thomas, L. N., , A. Tandon, , and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 117, Amer. Geophys. Union, 17–38, doi:10.1029/177GM04.

  • Thomas, L. N., , C. M. Lee, , and Y. Yoshikawa, 2010: The subpolar front of the Japan/East Sea. Part II: Inverse method for determining the frontal vertical circulation. J. Phys. Oceanogr., 40, 325.

    • Search Google Scholar
    • Export Citation
  • Viúdez, A., , and M. Claret, 2009: Numerical simulations of submesoscale balanced vertical velocity forcing unsteady nutrient-phytoplankton-zooplankton distributions. J. Geophys. Res., 114, C04023, doi:10.1029/2008JC005172.

    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., 1993: Model of frontogenesis: Subduction and upwelling. J. Mar. Res., 51, 497513.

  • Wood, R., and Coauthors, 2010: The VAMOS ocean-cloud-atmosphere-land study regional experiment (VOCALS-rex): Goals, platforms, and field operations. Atmos. Chem. Phys. Discuss., 10, 153, doi:10.5194/acpd-10-1-2010.

    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., , K. Akitomo, , and T. Awaji, 2001: Formation process of intermediate water in baroclinic current under cooling. J. Geophys. Res., 106 (C1), 10331051.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 176 19
PDF Downloads 171 171 18

Finescale Vertical Structure of the Upwelling System off Southern Peru as Observed from Glider Data

View More View Less
  • 1 LOCEAN, Paris, France
  • | 2 LEGOS-OMP, Toulouse, France
  • | 3 LOCEAN, Paris, France
  • | 4 LEGOS-OMP, Toulouse, France
  • | 5 IMARPE, Chucuito-Callao, Peru
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The upwelling system off southern Peru has been observed using an autonomous underwater vehicle (a Slocum glider) during October–November 2008. Nine cross-front sections have been carried out across an intense upwelling cell near 14°S. During almost two months, profiles of temperature, salinity, and fluorescence were collected at less than 1-km resolution, between the surface and 200-m depth. Estimates of alongshore absolute geostrophic velocities were inferred from the density field and the glider drift between two surfacings. In the frontal region, salinity and biogeochemical fields displayed cross-shore submesoscale filamentary structures throughout the mission. Those features presented a width of 10–20 km, a vertical extent of ~150 m, and appeared to propagate toward the shore. They were steeper than isopycnals and kept an aspect ratio close to f/N, the inverse of the Prandtl ratio. These filamentary structures may be interpreted mainly as a manifestation of submesoscale turbulence through stirring of the salinity gradients by the mesoscale eddy field. However, meandering of the front or cross-frontal wind-driven instabilities could also play a role in inducing vertical velocities.

Corresponding author address: Alice Pietri, LOCEAN, 4 Place Jussieu, Case 100, 75252 Paris CEDEX 05, France. E-mail: alice.pietri@locean-ipsl.upmc.fr

Abstract

The upwelling system off southern Peru has been observed using an autonomous underwater vehicle (a Slocum glider) during October–November 2008. Nine cross-front sections have been carried out across an intense upwelling cell near 14°S. During almost two months, profiles of temperature, salinity, and fluorescence were collected at less than 1-km resolution, between the surface and 200-m depth. Estimates of alongshore absolute geostrophic velocities were inferred from the density field and the glider drift between two surfacings. In the frontal region, salinity and biogeochemical fields displayed cross-shore submesoscale filamentary structures throughout the mission. Those features presented a width of 10–20 km, a vertical extent of ~150 m, and appeared to propagate toward the shore. They were steeper than isopycnals and kept an aspect ratio close to f/N, the inverse of the Prandtl ratio. These filamentary structures may be interpreted mainly as a manifestation of submesoscale turbulence through stirring of the salinity gradients by the mesoscale eddy field. However, meandering of the front or cross-frontal wind-driven instabilities could also play a role in inducing vertical velocities.

Corresponding author address: Alice Pietri, LOCEAN, 4 Place Jussieu, Case 100, 75252 Paris CEDEX 05, France. E-mail: alice.pietri@locean-ipsl.upmc.fr
Save