• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature, 423, 159163.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30, 805832.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., , and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722.

  • Bessières, L., , G. Madec, , and F. Lyard, 2008: Global tidal residual mean circulation: Does it affect a climate OGCM? Geophys. Res. Lett., 35, L03609, doi:10.1029/2007GL032644.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., , and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517.

  • D’Asaro, E., , M. Eriksen, , M. Levine, , P. Niller, , C. Paulson, , and P. Van Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22 47522 502.

    • Search Google Scholar
    • Export Citation
  • Friedrich, T., , A. Timmermann, , T. Decloedt, , D. S. Luther, , and A. Mouchet, 2011: The effect of topography-enhanced diapycnal mixing on ocean and atmospheric circulation and marine biogeochemistry. Ocean Modell., 39, 262274.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42, 359393.

  • Garrett, C., , and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787.

  • Griffies, S. M., , R. C. Pacanowski, , and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., , and A. Adcroft, 2009: Reconciling estimates of the free surface height in lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modell., 29, 1526, doi:10.1016/j.ocemod.2009.02.008.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., , and R. W. Hallberg, 2008: Pacific subtropical cell response to reduced equatorial dissipation. J. Phys. Oceanogr., 38, 18941912.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727746.

  • Ilicak, M., , A. Adcroft, , S. M. Griffies, , and R. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45-46, 3758.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., , R. Hallberg, , and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr., 38, 10331053.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814.

  • Jochum, M., , B. P. Briegleb, , G. Danabasoglu, , W. G. Large, , N. J. Norton, , S. R. Jayne, , M. H. Alford, , and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian ridge. J. Phys. Oceanogr., 36, 11481164.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., , S. A. Legg, , and R. Pinkel, 2010: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , E. T. Montgomery, , K. L. Polzin, , L. C. St. Laurent, , R. W. Schmitt, , and J. M. Toole, 2000: Mixing over rough topography in the Brazil basin. Nature, 403, 179182.

    • Search Google Scholar
    • Export Citation
  • Legg, S., , and J. M. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a steep ridge. J. Phys. Oceanogr., 38, 19491964.

    • Search Google Scholar
    • Export Citation
  • Legg, S., , R. Hallberg, , and J. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and nonhydrostatic models. Ocean Modell., 11, 6997.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The gravity current entrainment climate process team. Bull. Amer. Meteor. Soc., 90, 657670.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • MacKinnon, J. A., , and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • Melet, A., , J. Verron, , and J.-M. Brankart, 2012: Potential outcomes of glider data assimilation in the Solomon Sea: Control of the water mass properties and parameter estimation. J. Mar. Syst., 94, 232246, doi:10.1016/j.jmarsys.2011.12.003.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010.

  • Nikurashin, M., , and S. Legg, 2010: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., , and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106 (C10), 22 44122 449.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389.

  • Polzin, K. L., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., , and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826834.

    • Search Google Scholar
    • Export Citation
  • Scott, J. R., , and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32, 35783595.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , S. R. Jayne, , L. C. St. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6 (3–4), 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899.

  • St. Laurent, L. C., , and J. D. Nash, 2004: An examination of the radiative and dissipative properties of deep ocean internal tides. Deep-Sea Res. II, 51, 30293042.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , H. L. Simmons, , and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, 10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., , L. C. St. Laurent, , K. G. Speer, , J. M. Toole, , and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35, 13701381.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 332 26
PDF Downloads 160 160 15

Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing

View More View Less
  • 1 Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey
  • | 2 National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 3 Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey
  • | 4 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottom with a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel–Kramers–Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean–ice–atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.

Corresponding author address: Angelique Melet, Geophysical Fluid Dynamics Laboratory, Princeton University, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: angelique.melet@noaa.gov

Abstract

The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottom with a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel–Kramers–Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean–ice–atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.

Corresponding author address: Angelique Melet, Geophysical Fluid Dynamics Laboratory, Princeton University, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: angelique.melet@noaa.gov
Save