• Abramowitz, M., , and I. Stegun, Eds., 1972: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, Vol. 55, National Bureau of Standards, 1046 pp.

  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., , R. A. Locarnini, , T. P. Boyer, , A. V. Mishonov, , and H. E. García, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 62, 182 pp.

  • Bacmeister, J. T., , and R. T. Pierrehumbert, 1988: On the high-drag states of nonlinear stratified flow over an obstacle. J. Atmos. Sci., 45, 6380.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327.

  • Eckermann, S. D., , J. Lindeman, , D. Broutman, , J. Ma, , and Z. Boybeyi, 2010: Momentum fluxes of gravity waves generated by variable Froude number flow over three-dimensional obstacles. J. Atmos. Sci., 67, 22602278.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and D. Olbers, 2009: Why western boundary currents are diffusive: A link between bottom pressure torque and bolus velocity. Ocean Modell., 32, 1424.

    • Search Google Scholar
    • Export Citation
  • Egger, J., , K. Weickmann, , and K.-P. Hoinka, 2007: Angular momentum in the global atmospheric circulation. Rev. Geophys., 45, RG4007, doi:10.1029/2006RG000213.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources and sinks. Annu. Rev. Fluid Mech., 41, 253282.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Goff, J. A., 2010: Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res., 115, B12104, doi:10.1029/2010JB007867.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., , and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversions of sea beam data for second-order statistics. J. Geophys. Res., 93 (B11), 13 58913 608.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., , and T. Jordan, 1989: Stochastic modeling of seafloor morphology: A parameterized gaussian model. Geophys. Res. Lett., 16, 45–48.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., , and B. K. Arbic, 2010: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Modell., 32, 3643.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., , B. E. Tucholke, , J. Lin, , G. E. Jaroslow, , and M. C. Kleinrock, 1995: Quantitative analysis of abyssal hills in the Atlantic Ocean: A correlation between inferred crustal thickness and extensional faulting. J. Geophys. Res., 100, 22 50922 522.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., , Y. Ma, , A. Shah, , J. R. Cochran, , and J. C. Sempere, 1997: Stochastic analysis of seafloor morphology on the flank of the Southeast Indian Ridge: The influence of ridge morphology on the formation of abyssal hills. J. Geophys. Res., 102 (B7), 15 52115 534.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. W., , and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., , and B. A. de Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 2010: A mechanism of deep-ocean mixing due to near-inertial waves generated by flow over bottom topography. Dyn. Atmos. Oceans, 49, 124140.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., , A. V. Mishonov, , J. I. Antonov, , T. P. Boyer, , and H. E. García, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 61, 182 pp.

  • Lu, Y. Y., , and D. Stammer, 2004: Vorticity balance in coarse-resolution global ocean simulations. J. Phys. Oceanogr., 34, 605622.

  • McCartney, M. S., 1975: Inertial Taylor columns on a beta plane. J. Fluid Mech., 68, 7195.

  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 7993.

  • Naveira Garabato, A. C., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., , and T. L. Clark, 1979: The evolution and stability of finite amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 14981529.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., , J. Teixeira, , M. Peng, , T. F. Hogan, , and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography (Wash. D.C.), 15, 99108.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., , B. K. Arbic, , E. P. Chassignet, , A. C. Coward, , M. Maltrud, , W. J. Merryfield, , A. Srinivasan, , and A. Varghese, 2010: Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records. Ocean Modell., 32, 157169.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., , J. A. Goff, , A. C. Naveira Garabato, , and A. G. J. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116 (C9), doi:10.1029/2011JC007005.

    • Search Google Scholar
    • Export Citation
  • Siefridt, L., , and B. Barnier, 1993: Banque de Données AVISO Vent/flux: Climatologie des analyses de surface du CEP-MMT. IFREMER Tech. Rep. 91, 43 pp.

  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32, L18603, doi:10.1029/2005GL023568.

  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683.

  • Smith, W. H. F., , and D. T. Sandwell, 2004: Conventional bathymetry, bathymetry from space, and geodetic altimetry. Oceanography, 17, 823.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., , A. C. Naveira Garabato, , J. R. Ledwell, , A. M. Thurnherr, , J. M. Toole, , and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 2143–2152.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29, 202206.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Waterman, S. N., , A. C. Naveira Garabato, , and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., , B. A. de Cuevas, , and A. C. Coward, 1998: The first main run of the OCCAM global ocean model. Southampton Oceanography Centre Internal Doc. 34, 43 pp.

  • Welch, W. T., , P. K. Smolarkiewicz, , R. Rotunno, , and B. Boville, 2001: The large-scale effects of flow over periodic mesoscale topography. J. Atmos. Sci., 58, 14771492.

    • Search Google Scholar
    • Export Citation
  • Wells, H., , S. B. Vosper, , A. N. Ross, , A. R. Brown, , and S. Webster, 2008: Wind direction effects on orographic drag. Quat. J. Roy. Meteor. Soc., 134, 689701.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 121 9
PDF Downloads 83 83 9

The Impact of Small-Scale Topography on the Dynamical Balance of the Ocean

View More View Less
  • 1 University of Southampton, National Oceanography Centre, Southampton, United Kingdom
  • | 2 National Oceanography Centre, Southampton, United Kingdom
  • | 3 Laboratoire de Physique des Océans, University of Brest, France
  • | 4 Institute for Geophysics, University of Texas at Austin, Austin, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The impact of small-scale topography on the ocean’s dynamical balance is investigated by quantifying the rates at which internal wave drag extracts (angular) momentum and vorticity from the general circulation. The calculation exploits the recent advent of two near-global descriptions of topographic roughness on horizontal scales on the order of 1–10 km, which play a central role in the generation of internal lee waves by geostrophic flows impinging on topography and have been hitherto unresolved by bathymetric datasets and ocean general circulation models alike. It is found that, while internal wave drag is a minor contributor to the ocean’s dynamical balance over much of the globe, it is a significant player in the dynamics of extensive areas of the ocean, most notably the Antarctic Circumpolar Current and several regions of enhanced small-scale topographic variance in the equatorial and Southern Hemisphere oceans. There, the contribution of internal wave drag to the ocean’s (angular) momentum and vorticity balances is generally on the order of ten to a few tens of percent of the dominant source and sink terms in each dynamical budget, which are respectively associated with wind forcing and form drag by topography with horizontal scales from 500 to 1000 km. It is thus suggested that the representation of internal wave drag in general circulation models may lead to significant changes in the deep ocean circulation of those regions. A theoretical scaling is derived that captures the basic dependence of internal wave drag on topographic roughness and near-bottom flow speed for most oceanographically relevant regimes.

Corresponding author address: Alberto C. Naveira Garabato, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, United Kingdom. E-mail: acng@noc.soton.ac.uk

Abstract

The impact of small-scale topography on the ocean’s dynamical balance is investigated by quantifying the rates at which internal wave drag extracts (angular) momentum and vorticity from the general circulation. The calculation exploits the recent advent of two near-global descriptions of topographic roughness on horizontal scales on the order of 1–10 km, which play a central role in the generation of internal lee waves by geostrophic flows impinging on topography and have been hitherto unresolved by bathymetric datasets and ocean general circulation models alike. It is found that, while internal wave drag is a minor contributor to the ocean’s dynamical balance over much of the globe, it is a significant player in the dynamics of extensive areas of the ocean, most notably the Antarctic Circumpolar Current and several regions of enhanced small-scale topographic variance in the equatorial and Southern Hemisphere oceans. There, the contribution of internal wave drag to the ocean’s (angular) momentum and vorticity balances is generally on the order of ten to a few tens of percent of the dominant source and sink terms in each dynamical budget, which are respectively associated with wind forcing and form drag by topography with horizontal scales from 500 to 1000 km. It is thus suggested that the representation of internal wave drag in general circulation models may lead to significant changes in the deep ocean circulation of those regions. A theoretical scaling is derived that captures the basic dependence of internal wave drag on topographic roughness and near-bottom flow speed for most oceanographically relevant regimes.

Corresponding author address: Alberto C. Naveira Garabato, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, United Kingdom. E-mail: acng@noc.soton.ac.uk
Save