• Abernathey, R., , J. Marshall, , and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278.

    • Search Google Scholar
    • Export Citation
  • Allison, L. C., , H. L. Johnson, , D. P. Marshall, , and D. R. Munday, 2010: Where do winds drive the Antarctic Circumpolar Current? Geophys. Res. Lett., 37, L12605, doi:10.1029/2010GL043355.

    • Search Google Scholar
    • Export Citation
  • Allison, L. C., , H. L. Johnson, , and D. P. Marshall, 2011: Spin-up and adjustment of the Antarctic Circumpolar Current and global pycnocline. J. Mar. Res., 69, 167189, doi:10.1357/002224011798765330.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , A. Dispert, , M. Visbeck, , S. R. Rintoul, , and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304.

  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970985.

  • Cessi, P., 2008: An energy-constrained parameterization of eddy buoyancy flux. J. Phys. Oceanogr., 38, 18071820.

  • Cessi, P., , W. R. Young, , and J. A. Polton, 2006: Control of large-scale heat transport by small-scale mixing. J. Phys. Oceanogr., 36, 18771894.

    • Search Google Scholar
    • Export Citation
  • Damerell, G. M., , K. J. Heywood, , D. P. Stevens, , and A. C. Naveira Garabato, 2012: Temporal variability of diapcnal mixing in Shag Rocks Passage. J. Phys. Oceanogr., 42, 370385.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , J. C. McWilliams, , and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264, 11231126.

    • Search Google Scholar
    • Export Citation
  • Daru, V., , and C. Tenaud, 2004: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys., 193, 563594.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and F. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20708, doi:10.1029/2008GL035166.

    • Search Google Scholar
    • Export Citation
  • Döös, K., , and D. J. Webb, 1994: The Deacon cell and other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442.

  • Eden, C., , and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239.

  • Egbert, G. D., , R. D. Ray, , and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , and T. L. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., , T. L. Delworth, , A. J. Rosati, , S. M. Griffies, , and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557.

    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., , and G. K. Vallis, 2007: Interhemispheric influence of surface buoyancy conditions on a circumpolar current. Geophys. Res. Lett., 34, L14605, doi:10.1029/2007GL030379.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gent, P. R., , and G. Danabasoglu, 2011: Response of increasing southern hemisphere winds in CCSM4. J. Climate, 24, 49924998.

  • Gent, P. R., , J. Willebrand, , T. J. McDougall, , and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circlation models. J. Phys. Oceanogr., 25, 463474.

    • Search Google Scholar
    • Export Citation
  • Gerdes, R., , C. Köberle, , and J. Willebrand, 1991: The influence of numerical advection schemes on the results of ocean general circulation models. Climate Dyn., 5, 211226.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079.

  • Gnanadesikan, A., , and R. W. Hallberg, 2000: On the relationship of the Circumpolar Current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30, 20132034.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., , A. M. de Boer, , and B. K. Mignone, 2007: A simple theory of the pycnocline and overturning revisited. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 19–32.

  • Green, J. A. M., , C. L. Green, , G. R. Bigg, , T. P. Rippeth, , J. D. Scourse, , and K. Uehara, 2009: Tidal mixing and the Meridional Overturning Circulation from the Last Glacial Maximum. Geophys. Res. Lett., 36, L15603, doi:10.1029/2009GL039309.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841.

  • Hallberg, R., , and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., , and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven southern hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., , and G. K. Vallis, 2004: The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34, 24282443.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., , and G. K. Vallis, 2005: The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr., 35, 880896.

    • Search Google Scholar
    • Export Citation
  • Hill, C., , D. Ferreira, , J. M. Campin, , J. Marshall, , R. Abernathey, , and N. Barrier, 2012: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models—Insights from virtual deliberate tracer release experiments. Ocean Modell., 45–46, 1426, doi:10.1016/j.ocemod.2011.12.001.

    • Search Google Scholar
    • Export Citation
  • Hofmann, M., , and M. A. Morales-Maqueda, 2011: The response of Southern Ocean eddies to increased midlatitude westerlies: A non-eddy resolving model study. Geophys. Res. Lett., 38, L03605, doi:10.1029/2010GL045972.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., 2010: An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett., 37, L23601, doi:10.1029/2010GL044777.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., , and J. R. Blundell, 2006: Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr., 36, 16261645.

  • Hogg, A. M., , M. P. Meredith, , J. R. Blundell, , and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., , A. J. Adcroft, , S. M. Griffies, , and R. W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45–46, 3758, doi:10.1016/j.ocemod.2011.10.003.

    • Search Google Scholar
    • Export Citation
  • Ito, T., , and M. J. Follows, 2003: Upper ocean control on the solubility pump of CO2. J. Mar. Res., 61, 465489.

  • Ito, T., , and M. J. Follows, 2005: Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res., 63, 813839.

  • Jackett, D. R., , and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389.

    • Search Google Scholar
    • Export Citation
  • Jamart, B. M., , and J. Ozer, 1986: Numerical boundary layers and spurious residual flows. J. Geophys. Res., 91, 10 62110 631.

  • Johnson, G. C., , and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953.

  • Johnson, H. L., , D. P. Marshall, , and D. A. J. Sproson, 2007: Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Climate Dyn., 29, 821836.

    • Search Google Scholar
    • Export Citation
  • Jones, D. C., , T. Ito, , and N. S. Lovenduski, 2011: The transient response of the Southern Ocean pycnocline to changing atmospheric winds. Geophys. Res. Lett., 38, L15604, doi:10.1029/2011GL048145.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., , R. S. Smith, , Z. Wang, , and J. M. Gregory, 2012: The influence of eddy parameterizations on the transport of the Antarctic Circumpolar Current in coupled climate models. Ocean Modell., 52–53, 18.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576.

    • Search Google Scholar
    • Export Citation
  • Lee, M. M., , D. P. Marshall, , and R. G. Williams, 1997: On the eddy transfer of tracers: Advective or diffusive? J. Mar. Res., 55, 483505.

    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1995: Topographic steering of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 25, 16361650.

  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222.

  • Marshall, D., , and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Modell., 32, 188204.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997a: A finite volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , C. Hill, , L. Perelman, , and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res., 102, 57335752.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., , and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660.

  • Meredith, M. P., , and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , P. L. Woodworth, , C. W. Hughes, , and V. Stepanov, 2004: Changes in ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophys. Res. Lett., 31, L21305, doi:10.1029/2004GL021169.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and Coauthors, 2011: Sustained monitoring of the Southern Ocean at Drake Passage: past achievements and future priorities. Rev. Geophys., 49, RG4005, doi:10.1029/2010RG000348.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , A. C. Naveira Garabato, , A. M. Hogg, , and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., , and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., , A. M. Hogg, , and M. L. Ward, 2011: Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing. Geophys. Res. Lett., 38, L14602, doi:10.1029/2011GL048031.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., , L. C. Allison, , H. L. Johnson, , and D. P. Marshall, 2011: Remote forcing of the antarctic circumpolar current by diapycnal mixing. Geophys. Res. Lett., 38, L08609, doi:10.1029/2011GL046849.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., , and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355.

  • Nadeau, L. P., , and D. N. Straub, 2009: Basin and channel contributions to a model Antarctic Circumpolar Current. J. Phys. Oceanogr., 39, 9861002.

    • Search Google Scholar
    • Export Citation
  • Nadeau, L. P., , and D. N. Straub, 2012: Influence of wind stress, wind stress curl, and bottom friction on the transport of a model Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 207222.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J., , and M. M. Lee, 2004a: Isopycnal averaging at constant height. Part I: The formulation and a case study. J. Phys. Oceanogr., 34, 27212739.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. & , and M. M. Lee 2004b: Isopycnal averaging at constant height. Part II: Relating to the residual streamfunction in Eulerian space. J. Phys. Oceanogr., 34, 27402755.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., 1998: Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the Circumpolar Current.” J. Phys. Oceanogr., 28, 16471654.

    • Search Google Scholar
    • Export Citation
  • Oliver, K. I. C., , and N. R. Edwards, 2008: Location of potential energy sources and the export of dense water from the Atlantic Ocean. Geophys. Res. Lett., 35, L2204, doi:10.101029/2008GL035537.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., , E. C. Brady, , G. Clauzet, , R. Tomas, , S. Levis, , and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19, 25262542.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., , and A. Ganopolski, 1999: Simple theoretical model may explain apparent climate instability. J. Climate, 12, 13491352.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Rintoul, S., , C. Hughes, , and D. Olbers, 2001, The Antarctic Circumpolar Current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 271–302.

  • Roberts, M., , and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28, 20502063.

    • Search Google Scholar
    • Export Citation
  • Roberts, M., and Coauthors, 2004: Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate, 17, 320.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., , J. M. Gregory, , A. J. Weaver, , and M. Eby, 2002: Distinguishing the influence of heat, freshwater, and momentum fluxes on ocean circulation and climate. J. Climate, 15, 36863697.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , N. P. Gillett, , D. P. Stevens, , G. J. Marshall, , and H. K. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J. Climate, 22, 806818.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Spence, P., , O. Saenko, , M. Eby, , and A. J. Weaver, 2009: The Southern Ocean overturning: Parameterized versus permitted eddies. J. Phys. Oceanogr., 39, 16341651.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., , and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy-resolving general-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929951.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline circulation with two stable regimes of flow. Tellus, 13, 224230.

  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776782.

    • Search Google Scholar
    • Export Citation
  • Tansley, C. E., , and D. P. Marshall, 2001: On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr., 31, 32583273.

  • Toggweiler, J. R., , J. L. Russell, , and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , J. Le Somner, , J. M. Molines, , and B. de Cuevas, 2010: Response of the Southern Ocean to the Southern Annular Mode: Internannual variability and multidecadal trend. J. Phys. Oceanogr., 40, 16591668.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30, 933954.

    • Search Google Scholar
    • Export Citation
  • Viebahn, J., , and C. Eden, 2010: Towards the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modell., 34, 150165.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., , J. Marshall, , T. Haine, , and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402.

    • Search Google Scholar
    • Export Citation
  • von der Heydt, A., , and H. A. Dijkstra, 2008: The effect of gateways on ocean circulation patterns in the Cenozoic. Global Planet. Change, 62, 132146.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195.

  • Wang, Z., , T. Kuhlbrodt, , and M. P. Meredith, 2011: On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J. Geophys. Res., 116, C08011, doi:10.1029/2010JC006757.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., , and A. C. Naveira Garabato, 2006: The role of Southern Ocean mixing and upwelling in glacial-intergrlacial atmospheric CO2 change. Tellus, 58B, 7387.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2009: Overturning circulation in an eddy-resolving model: The effect of the pole-to-pole temperature gradient. J. Phys. Oceanogr., 39, 125142.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538.

    • Search Google Scholar
    • Export Citation
  • Wolff, J.-O., , E. Maier-Reimer, , and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal β-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Channel. J. Phys. Oceanogr., 21, 236264.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2003: Determining paleoceanographic circulations, with emphasis on the Last Glacial Maximum. Quat. Sci. Rev., 22, 371385.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and P. Heimbach, 2008: How long to oceanic tracer and proxy equilibrium? Quat. Sci. Rev., 27, 637651.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 846 846 186
PDF Downloads 1172 1172 34

Eddy Saturation of Equilibrated Circumpolar Currents

View More View Less
  • 1 Department of Physics, University of Oxford, Oxford, United Kingdom
  • | 2 Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
  • | 3 Department of Physics, University of Oxford, Oxford, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study uses a sector configuration of an ocean general circulation model to examine the sensitivity of circumpolar transport and meridional overturning to changes in Southern Ocean wind stress and global diapycnal mixing. At eddy-permitting, and finer, resolution, the sensitivity of circumpolar transport to forcing magnitude is drastically reduced. At sufficiently high resolution, there is little or no sensitivity of circumpolar transport to wind stress, even in the limit of no wind. In contrast, the meridional overturning circulation continues to vary with Southern Ocean wind stress, but with reduced sensitivity in the limit of high wind stress. Both the circumpolar transport and meridional overturning continue to vary with diapycnal diffusivity at all model resolutions. The circumpolar transport becomes less sensitive to changes in diapycnal diffusivity at higher resolution, although sensitivity always remains. In contrast, the overturning circulation is more sensitive to change in diapycnal diffusivity when the resolution is high enough to permit mesoscale eddies.

Corresponding author address: David R. Munday, Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom. E-mail: munday@atm.ox.ac.uk

Abstract

This study uses a sector configuration of an ocean general circulation model to examine the sensitivity of circumpolar transport and meridional overturning to changes in Southern Ocean wind stress and global diapycnal mixing. At eddy-permitting, and finer, resolution, the sensitivity of circumpolar transport to forcing magnitude is drastically reduced. At sufficiently high resolution, there is little or no sensitivity of circumpolar transport to wind stress, even in the limit of no wind. In contrast, the meridional overturning circulation continues to vary with Southern Ocean wind stress, but with reduced sensitivity in the limit of high wind stress. Both the circumpolar transport and meridional overturning continue to vary with diapycnal diffusivity at all model resolutions. The circumpolar transport becomes less sensitive to changes in diapycnal diffusivity at higher resolution, although sensitivity always remains. In contrast, the overturning circulation is more sensitive to change in diapycnal diffusivity when the resolution is high enough to permit mesoscale eddies.

Corresponding author address: David R. Munday, Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom. E-mail: munday@atm.ox.ac.uk
Save