• Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, and H. E. Garcia, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Armi, L., D. Hebert, N. Oakey, J. Price, P. Richardson, H. Rossby, and B. Ruddick, 1989: Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354370.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Pedlosky, and R. Pickart, 2008: Eddy formation near the west coast of Greenland. J. Phys. Oceanogr., 38, 19922002.

  • Bretherton, F., and D. Haidvogel, 1976: Two-dimensional turbulence above topography. J. Fluid Mech., 78, 129154.

  • Bruce, J., 1995: Eddies southwest of the Denmark Strait. Deep-Sea Res. I, 42, 1317.

  • Carnevale, G., R. Kloosterziel, and G. Van Heijst, 1991: Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech., 233, 119139.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and P. Linden, 1999: Cyclone and anticyclone formation in a rotating stratified fluid over a sloping bottom. J. Fluid Mech., 381, 199223.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., R. DeSzoeke, M. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., M. Schlax, R. Samelson, and R. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett.,34, L15606, doi:10.1029/2007GL030812.

  • Chelton, D., M. Schlax, and R. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216.

  • Daniault, N., P. Lherminier, and H. Mercier, 2011: Circulation and transport at the southeast tip of Greenland. J. Phys. Oceanogr., 41, 437457.

    • Search Google Scholar
    • Export Citation
  • De Jong, F., 2010: Hydrographic variability of the Irminger Sea. Ph.D. thesis, University of Utrecht, 208 pp.

  • De Jong, M., H. van Aken, K. Våge, and R. Pickart, 2012: Convective mixing in the central Irminger Sea: 2002–2010. Deep-Sea Res. I, 63, 3651.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 (C8), 19 477–19 498.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363.

  • Emery, W., W. Lee, and L. Magaard, 1984: Geographic and seasonal distributions of Brunt–Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr., 14, 294317.

    • Search Google Scholar
    • Export Citation
  • Falina, A., A. Sarafanov, and A. Sokov, 2007: Variability and renewal of Labrador Sea Water in the Irminger Basin in 1991–2004. J. Geophys. Res., 112, C01006, 10.1029/2005JC003348.

    • Search Google Scholar
    • Export Citation
  • Gascard, J., and K. Mork, 2008: Climatic importance of large-scale and mesoscale circulation in the Lofoten Basin deduced from Lagrangian observations. Arctic-Subarctic Ocean Fluxes, R. R. Dickson, J. Meinke, and P. Rhines, Eds., Springer, 131–143.

  • Gourcuff, C., P. Lherminier, H. Mercier, and P. Le Traon, 2011: Altimetry combined with hydrography for ocean transport estimation. J. Atmos. Oceanic Technol., 28, 13241337.

    • Search Google Scholar
    • Export Citation
  • Hansen, D., and A. Herman, 1989: Temporal sampling requirements for surface drifting buoys in the tropical Pacific. J. Atmos. Oceanic Technol., 6, 599607.

    • Search Google Scholar
    • Export Citation
  • Hansen, D., and P. Poulain, 1996: Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Oceanic Technol., 13, 900910.

    • Search Google Scholar
    • Export Citation
  • Hátún, H., C. Eriksen, P. Rhines, and J. Lilly, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., N. Oakey, and B. Ruddick, 1990: Evolution of a Mediterranean salt lens: Scalar properties. J. Phys. Oceanogr., 20, 14681483.

    • Search Google Scholar
    • Export Citation
  • Holliday, N., A. Meyer, S. Bacon, S. Alderson, and B. de Cuevas, 2007: The retroflection of part of the East Greenland Current at Cape Farewell. Geophys. Res. Lett.,34, L07609, 10.1029/2006GL029085.

  • Holliday, N., and Coauthors, 2008: Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys. Res. Lett.,35, L03614, doi:10.1029/2007GL032675.

  • Huppert, H., and K. Bryan, 1976: Topographically generated eddies. Deep-Sea Res., 23, 655679.

  • Karstensen, J., 2005: Calibration of physical data. Internal Report: Animate Report, Geomar, 43 pp.

  • Katsman, C., M. Spall, and R. Pickart, 2004: Boundary Current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34, 19671983.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2007: Generation and stability of a quasi-permanent vortex in the Lofoten Basin. J. Phys. Oceanogr., 37, 26372651.

  • Krauss, W., 1995: Currents and mixing in the Irminger Sea and in the Iceland Basin. J. Geophys. Res.,100, (C6), 10 851–10 872.

  • Lavender, K., R. Davis, and W. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407, 6669.

    • Search Google Scholar
    • Export Citation
  • Lavender, K., W. Brechner Owens, and R. Davis, 2005: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52, 767785.

    • Search Google Scholar
    • Export Citation
  • Lherminier, P., H. Mercier, C. Gourcuff, M. Alvarez, S. Bacon, and C. Kermabon, 2007: Transports across the 2002 Greenland-Portugal Ovide section and comparison with 1997. J. Geophys. Res., 112, C07003, doi:10.1029/2006JC003716.

    • Search Google Scholar
    • Export Citation
  • Lherminier, P., H. Mercier, T. Huck, C. Gourcuff, F. Perez, P. Morin, A. Sarafanov, and A. Falina, 2010: The Atlantic meridional overturning circulation and the subpolar gyre observed at the A25-OVIDE section in June 2002 and 2004. Deep-Sea Res. I, 57, 13741391.

    • Search Google Scholar
    • Export Citation
  • Lilly, J., and P. Rhines, 2002: Coherent eddies in the Labrador Sea observed from a mooring. J. Phys. Oceanogr., 32, 585598.

  • Lilly, J., P. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176.

    • Search Google Scholar
    • Export Citation
  • Louarn, E., H. Mercier, P. Morin, E. De Boisseson, and S. Bacon, 2009: Upper Labrador Sea Water in the Irminger Sea during a weak convection period (2002-2006). Ocean Sci. Discuss., 6, 20852113.

    • Search Google Scholar
    • Export Citation
  • Martin, J., C. Lee, C. Eriksen, C. Ladd, and N. Kachel, 2009: Glider observations of kinematics in a Gulf of Alaska eddy. J. Geophys. Res.,114, C12021, doi:10.1029/2008JC005231.

  • Maximenko, N., P. Niiler, L. Centurioni, M. Rio, O. Melnichenko, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 1021–1026.

    • Search Google Scholar
    • Export Citation
  • Nelder, J., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308–313.

  • Newton, J., K. Aagaard, and L. Coachman, 1974: Baroclinic eddies in the Arctic Ocean. Deep Sea Res. Oceanogr. Abstr., 21, 707719.

  • Nilsen, J., and E. Falck, 2006: Variations of mixed layer properties in the Norwegian Sea for the period 1948-1999. Prog. Oceanogr., 70, 5890.

    • Search Google Scholar
    • Export Citation
  • Picot, N., K. Case, S. Desai, and P. Vincent, 2003: AVISO and PODAAC User Handbook. IGDR and GDR Jason Products, 124 pp.

  • Pingree, R., and B. Le Cann, 1992: Anticyclonic eddy X91 in the southern Bay of Biscay, May 1991 to February 1992. J. Geophys. Res.,97 (C9), 14 353–14 367.

  • Poulain, P., A. Warn-Varnas, and P. Niiler, 1996: Near-surface circulation of the Nordic seas as measured by Lagrangian drifters. J. Geophys. Res.,101 (C8), 18 237–18 258.

  • Prater, M., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32, 411427.

    • Search Google Scholar
    • Export Citation
  • Richardson, P., D. Walsh, L. Armi, M. Schröder, and J. Price, 1989: Tracking three meddies with SOFAR floats. J. Phys. Oceanogr., 19, 371383.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., V. Ozhigin, V. Ivshin, and S. Bacon, 2009a: An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin. Deep-Sea Res. I, 56, 19551971.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., M. Prater, and H. Søiland, 2009b: Pathways of inflow and dispersion of warm waters in the Nordic seas. J. Geophys. Res.,114, C04011, doi:10.1029/2008JC005073.

  • Rudnick, D., R. Davis, C. Eriksen, D. Fratantoni, and M. Perry, 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384.

    • Search Google Scholar
    • Export Citation
  • Rykova, T., F. Straneo, J. Lilly, and I. Yashayaev, 2009: Irminger Current Anticyclones in the Labrador Sea observed in the hydrographic record, 1990-2004. J. Mar. Res., 67, 361384.

    • Search Google Scholar
    • Export Citation
  • Sarafanov, A., A. Sokov, A. Demidov, and A. Falina, 2007: Warming and salinification of intermediate and deep waters in the Irminger Sea and Iceland Basin in 1997–2006. Geophys. Res. Lett.,34, L23609, doi:10.1029/2007GL031074.

  • Schmidt, S., and U. Send, 2007: Origin and composition of seasonal Labrador Sea freshwater. J. Phys. Oceanogr., 37, 14451454.

  • Schott, F., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux, 2004: Circulation and deep-water export at the western exit of the subpolar North Atlantic. J. Phys. Oceanogr., 34, 817843.

    • Search Google Scholar
    • Export Citation
  • Sherman, J., R. Davis, W. Owens, and J. Valdes, 2001: The autonomous underwater glider Spray. IEEE J. Oceanic Eng., 26, 437446.

  • Stammer, D., and C. Böning, 1992: Mesoscale variability in the Atlantic Ocean from Geosat altimetry and WOCE high-resolution numerical modeling. J. Phys. Oceanogr., 22, 732752.

    • Search Google Scholar
    • Export Citation
  • Talley, L., 1988: Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr., 18, 89106.

  • Våge, K., and Coauthors, 2011: The Irminger Gyre: Circulation, convection, and interannual variability. Deep-Sea Res. I, 58, 590614.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C., and C. Cenedese, 2006: Laboratory experiments on eddy generation by a buoyant coastal current flowing over variable bathymetry. J. Phys. Oceanogr., 36, 395411.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 393 189 23
PDF Downloads 244 88 10

Observations of Irminger Sea Anticyclonic Eddies

Xue FanScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Xue Fan in
Current site
Google Scholar
PubMed
Close
,
Uwe SendScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Uwe Send in
Current site
Google Scholar
PubMed
Close
,
Pierre TestorL’OCEAN, Université Pierre and Marie Curie, Paris, France

Search for other papers by Pierre Testor in
Current site
Google Scholar
PubMed
Close
,
Johannes KarstensenIFM-GEOMAR, Kiel, Germany

Search for other papers by Johannes Karstensen in
Current site
Google Scholar
PubMed
Close
, and
Pascale LherminierIfremer, Plouzané, France

Search for other papers by Pascale Lherminier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale anticyclonic eddies in the Irminger Sea are observed using a mooring and a glider. Between 2002 and 2009, the mooring observed 53 anticyclones. Using a kinematic model, objective estimates of eddy length scales and velocity structure are made for 16 eddies. Anticyclones had a mean core diameter of 12 km, and their mean peak observed azimuthal speed was 0.1 m s−1. They had core salinities and potential temperatures of 34.91–34.98 and 4.48°–5.34°C, respectively, making them warm and salty features. These properties represent a typical salinity anomaly of 0.03 and a temperature anomaly of 0.28°C from noneddy values. All eddies had small (≪1) Rossby numbers. In 2006, the glider observed two anticyclones having diameters of about 20 km and peak azimuthal speeds of about 0.3 m s−1. Similar salinity anomalies were detected throughout the Irminger Sea by floats profiling in anticyclones. Two formation regions for the eddies are identified: one to the west of the Reykjanes Ridge and the other off the East Greenland Irminger Current near Cape Farewell close to the mooring. Observations indicate that eddies formed in the former region are larger than eddies observed at the mooring. A clear increase in eddy salinity is observed between 2002 and 2009. The observed breakup of these eddies in winter implies that they are a source of salt for the central gyre. The anticyclones are similar to those found in both the Labrador Sea and Norwegian Sea, making them a ubiquitous feature of the subpolar North Atlantic basins.

Corresponding author address: Xue Fan, Scripps Institution of Oceanography, Mailcode 0208, 9500 Gilman Drive, La Jolla, CA 92093. E-mail: xufan@ucsd.edu

Abstract

Mesoscale anticyclonic eddies in the Irminger Sea are observed using a mooring and a glider. Between 2002 and 2009, the mooring observed 53 anticyclones. Using a kinematic model, objective estimates of eddy length scales and velocity structure are made for 16 eddies. Anticyclones had a mean core diameter of 12 km, and their mean peak observed azimuthal speed was 0.1 m s−1. They had core salinities and potential temperatures of 34.91–34.98 and 4.48°–5.34°C, respectively, making them warm and salty features. These properties represent a typical salinity anomaly of 0.03 and a temperature anomaly of 0.28°C from noneddy values. All eddies had small (≪1) Rossby numbers. In 2006, the glider observed two anticyclones having diameters of about 20 km and peak azimuthal speeds of about 0.3 m s−1. Similar salinity anomalies were detected throughout the Irminger Sea by floats profiling in anticyclones. Two formation regions for the eddies are identified: one to the west of the Reykjanes Ridge and the other off the East Greenland Irminger Current near Cape Farewell close to the mooring. Observations indicate that eddies formed in the former region are larger than eddies observed at the mooring. A clear increase in eddy salinity is observed between 2002 and 2009. The observed breakup of these eddies in winter implies that they are a source of salt for the central gyre. The anticyclones are similar to those found in both the Labrador Sea and Norwegian Sea, making them a ubiquitous feature of the subpolar North Atlantic basins.

Corresponding author address: Xue Fan, Scripps Institution of Oceanography, Mailcode 0208, 9500 Gilman Drive, La Jolla, CA 92093. E-mail: xufan@ucsd.edu
Save