• Burchard, H., 2001: On the q2 l equation by Mellor and Yamada, 1982. J. Phys. Oceanogr., 31, 13771387.

  • Carniel, S., M. Sclavo, L. H. Kantha, and C. A. Clayson, 2005: Langmuir cells and mixing in the upper ocean. Nuovo Cimento, 28C, 3354.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulation. J. Fluid Mech., 73, 401426.

  • Crow, S. C., 1968: Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech., 33, 120.

  • D’Alessio, J. S. D., K. Abdella, and N. A. McFarlane, 1998: A new second-order turbulence closure scheme for modeling the oceanic mixed layer. J. Phys. Oceanogr., 28, 16241641.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 35303537.

  • Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 5562.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2010: Measurement of vertical kinetic energy and vertical velocity skewness in oceanic boundary layers by imperfectly Lagrangian floats. J. Atmos. Oceanic Technol., 27, 19181935.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., E. L. Steffen, R. W. Garwood, and E. A. D’Asaro, 2002: Fully Lagrangian floats in Labrador Sea deep convection: Comparison of numerical and experimental results. J. Phys. Oceanogr., 32, 493509.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99 (C12), 25 23525 266.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6, 101124.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., U. Lass, and H. Prandke, 2010: A note on Stokes production of turbulence kinetic energy in the oceanic mixed layer: Observations in the Baltic Sea. Ocean Dyn., 60, 171180, doi:10.1007/s10236-009-0257-7; Corrigendum, 60, 629, doi:10.1007/s10236-010-0283-5.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1993: Cell merging and the jet/downwelling ratio in Langmuir circulation. J. Mar. Res., 51, 737769.

  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130.

  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237.

  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1986: An analysis of closures for pressure-scalar covariances in the convective boundary layer. J. Atmos. Sci., 43, 24992513.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., J. A. Smith, J. A. MacKinnon, and A. E. Tejada-Martínez, 2008: Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett., 35, L13602, doi:10.1029/2008GL033856.

    • Search Google Scholar
    • Export Citation
  • Rotta, J. C., 1951: Statistische Theorie nichthomogener Turbulenz, 1. Z. Phys., 129, 547572.

  • Smyth, W. D., E. D. Skyllingstad, C. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes in strokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004a: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004b: Impacts of breaking waves and Langmuir circulations on the ocean mixed layer in high winds. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 3A.2. [Available online at https://ams.confex.com/ams/26HURR/webprogram/Paper75679.html.]

  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, doi:10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 500 326 33
PDF Downloads 168 59 4

A Second-Moment Closure Model of Langmuir Turbulence

Ramsey R. HarcourtApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Ramsey R. Harcourt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Reynolds stress equation is modified to include the Craik–Leibovich vortex force, arising from the interaction of the phase-averaged surface wave Stokes drift with upper-ocean turbulence. An algebraic second-moment closure of the Reynolds stress equation yields an algebraic Reynolds stress model (ARSM) that requires a component of the vertical momentum flux to be directed down the gradient of the Stokes drift, in addition to the conventional component down the gradient of the ensemble-averaged Eulerian velocity. For vertical and horizontal component fluctuations, the momentum flux must be closed using the form , where the coefficient is generally distinct from the eddy viscosity or eddy diffusivity . Rational expressions for the stability functions , , and are derived for use in second-moment closure models where the turbulent velocity and length scales are dynamically modeled by prognostic equations for and . The resulting second-moment closure (SMC) includes the significant effects of the vortex force in the stability functions, in addition to source terms contributing to the and equations. Additional changes are made to the way in which is limited by proximity to boundaries or by stratification. The new SMC model is tuned to, and compared with, a suite of steady-state large-eddy simulation (LES) solutions representing a wide range of oceanic wind and wave forcing conditions. Comparisons with LES show the modified SMC captures important processes of Langmuir turbulence, but not without notable defects that may limit model generality.

Corresponding author address: R. R Harcourt., University of Washington, Applied Physics Laboratory, 1013 NE 40th Street, Seattle, WA 98105. E-mail: harcourt@apl.washington.edu

Abstract

The Reynolds stress equation is modified to include the Craik–Leibovich vortex force, arising from the interaction of the phase-averaged surface wave Stokes drift with upper-ocean turbulence. An algebraic second-moment closure of the Reynolds stress equation yields an algebraic Reynolds stress model (ARSM) that requires a component of the vertical momentum flux to be directed down the gradient of the Stokes drift, in addition to the conventional component down the gradient of the ensemble-averaged Eulerian velocity. For vertical and horizontal component fluctuations, the momentum flux must be closed using the form , where the coefficient is generally distinct from the eddy viscosity or eddy diffusivity . Rational expressions for the stability functions , , and are derived for use in second-moment closure models where the turbulent velocity and length scales are dynamically modeled by prognostic equations for and . The resulting second-moment closure (SMC) includes the significant effects of the vortex force in the stability functions, in addition to source terms contributing to the and equations. Additional changes are made to the way in which is limited by proximity to boundaries or by stratification. The new SMC model is tuned to, and compared with, a suite of steady-state large-eddy simulation (LES) solutions representing a wide range of oceanic wind and wave forcing conditions. Comparisons with LES show the modified SMC captures important processes of Langmuir turbulence, but not without notable defects that may limit model generality.

Corresponding author address: R. R Harcourt., University of Washington, Applied Physics Laboratory, 1013 NE 40th Street, Seattle, WA 98105. E-mail: harcourt@apl.washington.edu
Save