Abstract
The Reynolds stress equation is modified to include the Craik–Leibovich vortex force, arising from the interaction of the phase-averaged surface wave Stokes drift
Burchard, H., 2001: On the q2 l equation by Mellor and Yamada, 1982. J. Phys. Oceanogr., 31, 1377–1387.
Carniel, S., M. Sclavo, L. H. Kantha, and C. A. Clayson, 2005: Langmuir cells and mixing in the upper ocean. Nuovo Cimento, 28C, 33–54.
Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 2546–2559.
Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulation. J. Fluid Mech., 73, 401–426.
Crow, S. C., 1968: Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech., 33, 1–20.
D’Alessio, J. S. D., K. Abdella, and N. A. McFarlane, 1998: A new second-order turbulence closure scheme for modeling the oceanic mixed layer. J. Phys. Oceanogr., 28, 1624–1641.
D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 3530–3537.
Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 55–62.
Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 1871–1887.
Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 1542–1562.
Harcourt, R. R., and E. A. D’Asaro, 2010: Measurement of vertical kinetic energy and vertical velocity skewness in oceanic boundary layers by imperfectly Lagrangian floats. J. Atmos. Oceanic Technol., 27, 1918–1935.
Harcourt, R. R., E. L. Steffen, R. W. Garwood, and E. A. D’Asaro, 2002: Fully Lagrangian floats in Labrador Sea deep convection: Comparison of numerical and experimental results. J. Phys. Oceanogr., 32, 493–509.
Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99 (C12), 25 235–25 266.
Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6, 101–124.
Kantha, L. H., U. Lass, and H. Prandke, 2010: A note on Stokes production of turbulence kinetic energy in the oceanic mixed layer: Observations in the Baltic Sea. Ocean Dyn., 60, 171–180, doi:10.1007/s10236-009-0257-7; Corrigendum, 60, 629, doi:10.1007/s10236-010-0283-5.
Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.
Li, M., and C. Garrett, 1993: Cell merging and the jet/downwelling ratio in Langmuir circulation. J. Mar. Res., 51, 737–769.
McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 1–30.
McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225–237.
McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 1793–1816.
Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791–1806.
Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875.
Moeng, C.-H., and J. C. Wyngaard, 1986: An analysis of closures for pressure-scalar covariances in the convective boundary layer. J. Atmos. Sci., 43, 2499–2513.
Polton, J. A., J. A. Smith, J. A. MacKinnon, and A. E. Tejada-Martínez, 2008: Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett., 35, L13602, doi:10.1029/2008GL033856.
Rotta, J. C., 1951: Statistische Theorie nichthomogener Turbulenz, 1. Z. Phys., 129, 547–572.
Smyth, W. D., E. D. Skyllingstad, C. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes in strokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104–115.
Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004a: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143–174.
Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004b: Impacts of breaking waves and Langmuir circulations on the ocean mixed layer in high winds. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 3A.2. [Available online at https://ams.confex.com/ams/26HURR/webprogram/Paper75679.html.]
Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, doi:10.1029/2011JC007516.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 500 | 326 | 33 |
PDF Downloads | 168 | 59 | 4 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
The Reynolds stress equation is modified to include the Craik–Leibovich vortex force, arising from the interaction of the phase-averaged surface wave Stokes drift
The Reynolds stress equation is modified to include the Craik–Leibovich vortex force, arising from the interaction of the phase-averaged surface wave Stokes drift