• Alford, M., J. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett.,34, L24601, doi:10.1029/2007GL031566.

  • Benney, D., and P. Saffman, 1966: Nonlinear interactions of random waves in a dispersive medium. Proc. Roy. Soc. London,A289, 301–320.

  • Birkelund, Y., and A. Hanssen, 2009: Improved bispectrum based tests for Gaussianity and linearity. Signal Process., 89, 25372546.

  • Bretherton, F., 1964: Resonant interactions between waves—The case of discrete oscillations. J. Fluid Mech., 20, 457479.

  • Carter, G., and M. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., 1997: Tidal data inversion: Interpolation and inference. Prog. Oceanogr., 40 (1–4), 5380.

  • Egbert, G. D., and R. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22 47522 502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Phys. Oceanogr., 19, 183204.

  • Elgar, S., and R. Guza, 1988: Statistics of bicoherence. IEEE Trans. Acoust. Speech, 36, 16671668.

  • Frajka-Williams, E. E., E. L. Kunze, and J. A. MacKinnon, 2006: Bispectra of internal tides and parametric subharmonic instability. M.S. thesis, School of Oceanography, University of Washington, 26 pp.

  • Furuichi, N., T. Hibiya, and Y. Niwa, 2005: Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J. Phys. Oceanogr., 35, 21042109.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum. 1. General theory. J. Fluid Mech., 12, 481500.

  • Hasselmann, K., 1963a: On the non-linear energy transfer in a gravity wave spectrum. 2. Conservation theorems–wave-particle analogy–irreversibility. J. Fluid Mech., 15, 273281.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1963b: On the non-linear energy transfer in a gravity-wave spectrum. 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. J. Fluid Mech., 15, 385398.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1966: Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys., 4, 132.

  • Hibiya, T., Y. Niwa, and K. Fujiwara, 1998: Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103 (C9), 18 71518 722.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, doi:10.1029/2001JC001210.

    • Search Google Scholar
    • Export Citation
  • Hinich, M., and C. Clay, 1968: The application of the discrete Fourier transform in the estimation of power spectra, coherence, and bispectra of geophysical data. Rev. Geophys. Space Phys., 6, 289346.

    • Search Google Scholar
    • Export Citation
  • Hinich, M., and M. Wolinsky, 2005: Normalizing bispectra. J. Stat. Plann. Inference, 130 (1–2), 405411.

  • Kim, Y., and E. Powers, 1979: Digital bispectral analysis and its applications to non-linear wave interactions. IEEE Trans. Plasma Sci., 7, 120131.

    • Search Google Scholar
    • Export Citation
  • Klymak, J., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164.

    • Search Google Scholar
    • Export Citation
  • Klymak, J., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett.,32, L15605, doi:10.1029/2005GL023376.

  • MacKinnon, J. A., M. Alford, O. M. Sun, R. Pinkel, Z. Zhao, and J. M. Klymak, 2012: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr, 43, 1728.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82, 13671412.

  • McComas, C. H., and P. Müller, 1981a: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970986.

  • McComas, C. H., and P. Müller, 1981b: Time scales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr., 11, 139147.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and D. Olbers, 1975: On the dynamics of internal waves in the deep ocean. J. Geophys. Res., 80, 38483860.

  • Müller, P., G. Holloway, and F. Henyey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–290.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010.

  • Neshyba, S., and E. J. C. Sobey, 1975: Vertical cross coherence and cross bispectra between internal waves measured in a multiple-layered ocean. J. Geophys. Res., 80, 11521162.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and N. Pomphrey, 1981: Disqualifying two candidates for the energy balance of the oceanic internal wave field. J. Phys. Oceanogr., 11, 14231425.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1960: On the dynamics of unsteady gravity waves of finite amplitude. J. Fluid Mech., 9, 193217.

  • Phillips, O. M., 1961: On the dynamics of unsteady gravity waves of finite amplitude. Part 2. Local properties of a random wave field. J. Fluid Mech., 11, 143155.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2008: Advection, phase distortion, and the frequency spectrum of finescale fields in the sea. J. Phys. Oceanogr., 38, 291313.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and J. Smith, 1992: Repeat-sequence coding for improved precision of Doppler sonar and sodar. J. Atmos. Oceanic Technol., 9, 149163.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246.

  • Polzin, K., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006a: Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36, 11041122.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006b: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236.

  • Rainville, L., T. M. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357.

  • Simmons, H. L., 2008: Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modell., 21, 126138.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899.

  • Sun, O. M., and R. Pinkel, 2012: Energy transfer from high-shear, low-frequency internal waves to high-frequency waves near Kaena Ridge, Hawaii. J. Phys. Oceanogr., 42, 15241547.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., Y.-K. Tsang, and N. J. Balmforth, 2008: Near-inertial parametric subharmonic instability. J. Fluid Mech., 607, 125.

  • Zhao, Z., and M. Alford, 2009: New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr., 39, 16691684.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 101 12
PDF Downloads 165 68 6

Subharmonic Energy Transfer from the Semidiurnal Internal Tide to Near-Diurnal Motions over Kaena Ridge, Hawaii

Oliver M. SunMarine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Oliver M. Sun in
Current site
Google Scholar
PubMed
Close
and
Robert PinkelMarine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Robert Pinkel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program.

Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m.

The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.

Corresponding author address: Oliver M. Sun, Woods Hole Oceanographic Institution, M.S. #21 Woods Hole, MA 02543. E-mail: osun@whoi.edu

Abstract

Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program.

Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m.

The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.

Corresponding author address: Oliver M. Sun, Woods Hole Oceanographic Institution, M.S. #21 Woods Hole, MA 02543. E-mail: osun@whoi.edu
Save