• Benilov, E. S., 2001: Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr., 31, 20192025.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 27112734.

    • Search Google Scholar
    • Export Citation
  • Blumsack, S. L., and P. J. Gierasch, 1972: Mars—The effects of topography on baroclinic instability. J. Atmos. Sci., 29, 10811089.

  • Boland, E. J. D., A. F. Thompson, E. Shuckburgh, and P. H. Haynes, 2012: The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr., 42, 16351651.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans, 2, 341381.

  • Hallberg, R., 1997: Localized coupling between surface and bottom-intensified flow over topography. J. Phys. Oceanogr., 27, 977998.

  • Hart, J. E., 1975a: Baroclinic instability over a slope. Part I: Linear theory. J. Phys. Oceanogr., 5, 625633.

  • Hart, J. E., 1975b: Baroclinic instability over a slope. Part II: Finite-amplitude theory. J. Phys. Oceanogr., 5, 634641.

  • Isachsen, P. E., 2011: Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modell., 39, 183199.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., and J. Pedlosky, 1996: Radiating instability of nonzonal ocean currents. J. Phys. Oceanogr., 26, 622643.

  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr., 39, 13611379.

    • Search Google Scholar
    • Export Citation
  • Kondratyev, K., and G. Hunt, 1982: Weather and Climate on Planets. Elsevier, 768 pp.

  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., 1980: Baroclinic instability of flows along sloping boundaries. J. Atmos. Sci., 37, 13931399.

  • Melnichenko, O. V., N. A. Maximenko, N. Schneider, and H. Sasaki, 2010: Quasi-stationary striations in basin-scale oceanic circulation: Vorticity balance from observations and eddy-resolving model. Ocean Dyn., 60, 653666.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and H. Hasumi, 2005: A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35, 474488.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24, 469491.

  • Orsi, A. H., T. Whitworth, III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42, 641673.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

  • Pennel, R., A. Stegner, and K. Béranger, 2012: Shelf impact on buoyant coastal current instabilities. J. Phys. Oceanogr., 42, 3961.

  • Reznik, G. M., and T. B. Tsybaneva, 1999: Planetary waves in a stratified ocean of variable depth. Part 1. Two-layer model. J. Fluid Mech., 388, 115145.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1994: Jets. Chaos, 4, 313339.

  • Richards, K. J., N. A. Maximenko, F. O. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, 47.

  • Samelson, R. M., 1992: Surface-intensified Rossby waves over rough topography. J. Mar. Res., 50, 367384.

  • Samelson, R. M., and J. Pedlosky, 1990: Local baroclinic instability of flow over variable topography. J. Fluid Mech., 221, 411436.

  • Sokolov, S., and S. R. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37, 13941412.

    • Search Google Scholar
    • Export Citation
  • Steinsaltz, D., 1987: Instability of baroclinic waves with bottom slope. J. Phys. Oceanogr., 17, 23432350.

  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278.

  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flow and jets on a beta-plane and over topography. J. Phys. Oceanogr., 23, 13461362.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., I. Kamenkovich, and J. K. Willis, 2011: Quasi-zonal jets in 3-D Argo data of the northeast Atlantic. Geophys. Res. Lett., 38, L02606, doi:10.1029/2010GL046267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 411 168 17
PDF Downloads 300 102 11

Effects of Topography on Baroclinic Instability

Changheng ChenRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Changheng Chen in
Current site
Google Scholar
PubMed
Close
and
Igor KamenkovichRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Igor Kamenkovich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The importance of bottom topography in the linear baroclinic instability of zonal flows on the β plane is examined by using analytical calculations and a quasigeostrophic eddy-resolving numerical model. The particular focus is on the effects of a zonal topographic slope, compared with the effects of a meridional slope. A zonal slope always destabilizes background zonal flows that are otherwise stable in the absence of topography regardless of the slope magnitude, whereas the meridional slopes stabilize/destabilize zonal flows only through changing the lower-level background potential vorticity gradient beyond a known critical value. Growth rates, phase speeds, and vertical structure of the growing solutions strongly depend on the slope magnitude. In the numerical simulations configured with an isolated meridional ridge, unstable modes develop on both sides of the ridge and propagate eastward of the ridge, in agreement with analytical results.

Corresponding author address: Igor Kamenkovich, Division of MPO, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: ikamenkovich@rsmas.miami.edu

Abstract

The importance of bottom topography in the linear baroclinic instability of zonal flows on the β plane is examined by using analytical calculations and a quasigeostrophic eddy-resolving numerical model. The particular focus is on the effects of a zonal topographic slope, compared with the effects of a meridional slope. A zonal slope always destabilizes background zonal flows that are otherwise stable in the absence of topography regardless of the slope magnitude, whereas the meridional slopes stabilize/destabilize zonal flows only through changing the lower-level background potential vorticity gradient beyond a known critical value. Growth rates, phase speeds, and vertical structure of the growing solutions strongly depend on the slope magnitude. In the numerical simulations configured with an isolated meridional ridge, unstable modes develop on both sides of the ridge and propagate eastward of the ridge, in agreement with analytical results.

Corresponding author address: Igor Kamenkovich, Division of MPO, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: ikamenkovich@rsmas.miami.edu
Save