• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106 (C8), 16 94716 968.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, doi:10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the sub-Arctic Pacific. J. Phys. Oceanogr., 42, 889909.

    • Search Google Scholar
    • Export Citation
  • Arbic, B., and Coauthors, 2009: Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res., 114, C02024, doi:10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Bendat, J. S., and A. G. Piersol, 1986: Random Data: Analysis and Measurement Procedures. 2nd ed. John Wiley, 566 pp.

  • Bouruet-Aubertot, P., H. Mercier, F. Gaillard, and P. Lherminier, 2005: Evidence of strong inertia-gravity wave activity during the POMME experiment. J. Geophys. Res., 110, C07S06, doi:10.1029/2004JC002747.

    • Search Google Scholar
    • Export Citation
  • Buhler, O., and M. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech., 534, 6796.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147.

    • Search Google Scholar
    • Export Citation
  • Chandrasekhar, S., 1961: Hydrodynamic and Hydromagnetic Stability. Dover, 652 pp.

  • Chinn, B., M. H. Alford, and J. B. Girton, 2012: Observations of internal waves and parametric subharmonic instability in the Philippines archipelago. J. Geophys. Res., 117, C05019, doi:10.1029/2011JC007392.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15, 943959.

  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322.

    • Search Google Scholar
    • Export Citation
  • Danioux, E., J. Vanneste, P. Klein, and H. Sasaki, 2012: Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid Mech., 699, 153173.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Ferrari, R., 2011: Ocean science: A frontal challenge for climate models. Science, 332, 316317, doi:10.1126/science.1203632.

  • Ferrari, R., and D. Rudnick, 2000: Thermohaline variability in the upper ocean. J. Geophys. Res., 105 (C7), 16 85716 883.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994: Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech., 281, 81118.

  • Ford, R., M. McIntyre, and W. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254.

  • Fu, L.-L., 1981: Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys., 19, 141170.

  • Garrett, C., 2001: What is the “near inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic, 662 pp.

  • Granata, T., J. Wiggert, and T. Dickey, 1995: Trapped, near-inertial waves and enhanced chlorophyll distributions. J. Geophys. Res., 100 (C10), 20 79320 804.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M., and M. J. Reeder, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122, 11531174.

    • Search Google Scholar
    • Export Citation
  • Hebert, H., and J. Moum, 1994: Decay of a near-inertial wave. J. Phys. Oceanogr., 24, 23342351.

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solutions. J. Atmos. Sci., 29, 1137.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi:10.1029/2005GL023289.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E. M., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • King, B. A., E. Firing, and T. M. Joyce, 2001: Shipboard observations during WOCE. Int. Geophys., 77, 99122.

  • Klein, P., G. Lapeyre, and W. G. Large, 2004: Wind ringing of the ocean in presence of mesoscale eddies. Geophys. Res. Lett., 31, L15306, doi:10.1029/2004GL020274.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1986: The mean and near-inertial velocity fields in a warm-core ring. J. Phys. Oceanogr., 16, 14441461.

  • Kunze, E., and T. B. Sanford, 1984: Observations of near-inertial waves in a front. J. Phys. Oceanogr., 14, 566581.

  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 2009: Spontaneous imbalance and hybrid vortex–gravity structures. J. Atmos. Sci., 66, 13151326.

  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15061518.

    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, H. Yamazaki, M. J. Doubell, and S. Gallager, 2013: Direct observations of microscale turbulence, subduction and upwelling in the Kuroshio Front. J. Geophys. Res., doi:10.1029/2011JC007228, in press.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. Vallis, and A. Adcroft, 2013: Routes to energy dissipation for geostrophic flows in the southern ocean. Nat. Geosci., 6, 4851.

    • Search Google Scholar
    • Export Citation
  • Ou, H., 1984: Geostrophic adjustment: A mechanism for frontogenesis. J. Phys. Oceanogr., 14, 9941000.

  • Pinkel, R., 1985: A wavenumber–frequency spectrum of upper ocean shear. J. Phys. Oceanogr., 15, 14531469.

  • Pinkel, R., 2012: Velocity imprecision in finite-beamwidth shipboard Doppler sonar: A first-generation correction algorithm. J. Atmos. Oceanic Technol., 29, 15691580.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed layer inertial currents. Deep-Sea Res., 53, 530.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 153175.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2008: Mesoscale eddy–internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment. J. Phys. Oceanogr., 38, 25562574.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2004: Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr., 34, 14951505.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. Griffiths, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122, 11751195.

    • Search Google Scholar
    • Export Citation
  • Roden, G., 1980: On the variability of surface temperature fronts in the western Pacific, as detected by satellite. J. Geophys. Res., 85, 27042710.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Mar. Res., 1, 239263.

    • Search Google Scholar
    • Export Citation
  • Salat, J., J. Tintore, J. Font, D. Wang, and M. Vieira, 1992: Near-inertial motion on the shelf-slope front off northeast Spain. J. Geophys. Res., 97 (C5), 72777281.

    • Search Google Scholar
    • Export Citation
  • Sen, A., R. Scott, and B. Arbic, 2008: Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: Computations from current-meter data. Geophys. Res. Lett., 35, L09606, doi:10.1029/2008GL033407.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., M. C. Gregg, M. H. Alford, and R. Harcourt, 2009: Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone. J. Phys. Oceanogr., 39, 27352756.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., M. C. Gregg, M. H. Alford, and R. Harcourt, 2010: Three-dimensional structure and temporal evolution of submesoscale thermohaline intrusions in the North Pacific subtropical frontal zone. J. Phys. Oceanogr., 40, 16691689.

    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39, 10351049.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899.

  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466.

  • Thomas, L. N., 2012: On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech., 711, 620640.

    • Search Google Scholar
    • Export Citation
  • Van Woert, M., 1982: The subtropical front: Satellite observations during FRONTS 80. J. Geophys. Res., 87, 95239536.

  • Vanneste, J., 2012: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172.

  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29 (8), doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Watson, K. M., 1990: The coupling of surface and internal gravity waves: Revisited. J. Phys. Oceanogr., 20, 12331248.

  • Weller, R. A., D. L. Rudnick, C. C. Eriksen, K. L. Polzin, N. S. Oakey, J. W. Toole, R. W. Schmitt, and R. T. Pollard, 1991: Forced ocean response during the Frontal Air-Sea Response Experiment. J. Geophys. Res., 96 (C5), 86118638.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2008: Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65, 35433556.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., P. L. Read, and T. W. N. Haine, 2003: Spontaneous generation and impact of inertia-gravity waves in a stratified, two-layer shear flow. Geophys. Res. Lett., 30, 2255, doi:10.1029/2003GL018498.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., T. W. N. Haine, and P. L. Read, 2005: On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech., 528, 122.

    • Search Google Scholar
    • Export Citation
  • Williams, R. T., 1967: Atmospheric frontogenesis: A numerical experiment. J. Atmos. Sci., 24, 627641.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 678 203 41
PDF Downloads 375 181 11

Observations of Near-Inertial Internal Gravity Waves Radiating from a Frontal Jet

View More View Less
  • 1 Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington
Restricted access

Abstract

Shipboard ADCP and towed CTD measurements are presented of a near-inertial internal gravity wave radiating away from a zonal jet associated with the Subtropical Front in the North Pacific. Three-dimensional spatial surveys indicate persistent alternating shear layers sloping downward and equatorward from the front. As a result, depth-integrated ageostrophic shear increases sharply equatorward of the front. The layers have a vertical wavelength of about 250 m and a slope consistent with a wave of frequency 1.01f. They extend at least 100 km south of the front. Time series confirm that the shear is associated with a downward-propagating near-inertial wave with frequency within 20% of f. A slab mixed layer model forced with shipboard and NCEP reanalysis winds suggests that wind forcing was too weak to generate the wave. Likewise, trapping of the near-inertial motions at the low-vorticity edge of the front can be ruled out because of the extension of the features well south of it. Instead, the authors suggest that the wave arises from an adjustment process of the frontal flow, which has a Rossby number about 0.2–0.3.

Corresponding author address: Matthew H. Alford, Applied Physics Laboratory, 1013 NE 40th St., Seattle, WA 98105. E-mail: malford@apl.washington.edu

Abstract

Shipboard ADCP and towed CTD measurements are presented of a near-inertial internal gravity wave radiating away from a zonal jet associated with the Subtropical Front in the North Pacific. Three-dimensional spatial surveys indicate persistent alternating shear layers sloping downward and equatorward from the front. As a result, depth-integrated ageostrophic shear increases sharply equatorward of the front. The layers have a vertical wavelength of about 250 m and a slope consistent with a wave of frequency 1.01f. They extend at least 100 km south of the front. Time series confirm that the shear is associated with a downward-propagating near-inertial wave with frequency within 20% of f. A slab mixed layer model forced with shipboard and NCEP reanalysis winds suggests that wind forcing was too weak to generate the wave. Likewise, trapping of the near-inertial motions at the low-vorticity edge of the front can be ruled out because of the extension of the features well south of it. Instead, the authors suggest that the wave arises from an adjustment process of the frontal flow, which has a Rossby number about 0.2–0.3.

Corresponding author address: Matthew H. Alford, Applied Physics Laboratory, 1013 NE 40th St., Seattle, WA 98105. E-mail: malford@apl.washington.edu
Save