The Force Balance of the Southern Ocean Meridional Overturning Circulation

Matthew R. Mazloff Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Matthew R. Mazloff in
Current site
Google Scholar
PubMed
Close
,
Raffaele Ferrari Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
, and
Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Southern Ocean (SO) limb of the meridional overturning circulation (MOC) is characterized by three vertically stacked cells, each with a transport of about 10 Sv (Sv ≡ 106 m3 s−1). The buoyancy transport in the SO is dominated by the upper and middle MOC cells, with the middle cell accounting for most of the buoyancy transport across the Antarctic Circumpolar Current. A Southern Ocean state estimate for the years 2005 and 2006 with ⅙° resolution is used to determine the forces balancing this MOC. Diagnosing the zonal momentum budget in density space allows an exact determination of the adiabatic and diapycnal components balancing the thickness-weighted (residual) meridional transport. It is found that, to lowest order, the transport consists of an eddy component, a directly wind-driven component, and a component in balance with mean pressure gradients. Nonvanishing time-mean pressure gradients arise because isopycnal layers intersect topography or the surface in a circumpolar integral, leading to a largely geostrophic MOC even in the latitude band of Drake Passage. It is the geostrophic water mass transport in the surface layer where isopycnals outcrop that accomplishes the poleward buoyancy transport.

Current affiliation: Swiss Federal Institute of Technology, Zurich, Switzerland.

Corresponding author address: Matthew Mazloff, Scripps Institution of Oceanography, UCSD, Mail Code 0230, 9500 Gilman Drive, La Jolla, CA 92093. E-mail: mmazloff@ucsd.edu

Abstract

The Southern Ocean (SO) limb of the meridional overturning circulation (MOC) is characterized by three vertically stacked cells, each with a transport of about 10 Sv (Sv ≡ 106 m3 s−1). The buoyancy transport in the SO is dominated by the upper and middle MOC cells, with the middle cell accounting for most of the buoyancy transport across the Antarctic Circumpolar Current. A Southern Ocean state estimate for the years 2005 and 2006 with ⅙° resolution is used to determine the forces balancing this MOC. Diagnosing the zonal momentum budget in density space allows an exact determination of the adiabatic and diapycnal components balancing the thickness-weighted (residual) meridional transport. It is found that, to lowest order, the transport consists of an eddy component, a directly wind-driven component, and a component in balance with mean pressure gradients. Nonvanishing time-mean pressure gradients arise because isopycnal layers intersect topography or the surface in a circumpolar integral, leading to a largely geostrophic MOC even in the latitude band of Drake Passage. It is the geostrophic water mass transport in the surface layer where isopycnals outcrop that accomplishes the poleward buoyancy transport.

Current affiliation: Swiss Federal Institute of Technology, Zurich, Switzerland.

Corresponding author address: Matthew Mazloff, Scripps Institution of Oceanography, UCSD, Mail Code 0230, 9500 Gilman Drive, La Jolla, CA 92093. E-mail: mmazloff@ucsd.edu
Save
  • Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 18771883.

  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. Holton, and C. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Dufour, C. O., J. Le Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1968: A linear model of the Antarctic Circumpolar Current. J. Fluid Mech., 32, 465488.

  • Held, I. M., and T. Schneider, 1999: The surface branch of the mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263.

  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953.

  • Juckes, M. N., I. N. James, and M. Blackburn, 1994: The influence of Antarctica on the momentum budget of the southern extratropics. Quart. J. Roy. Meteor. Soc., 120, 10171044.

    • Search Google Scholar
    • Export Citation
  • Koh, T.-Y., and R. A. Plumb, 2004: Isentropic zonal average formalism and the near-surface circulation. Quart. J. Roy. Meteor. Soc., 130, 16311653.

    • Search Google Scholar
    • Export Citation
  • Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization and the equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35, 175187.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., and P. Isachsen, 2010: The linear models of the ACC. Prog. Oceanogr., 84 (3–4), 139157.

  • Lee, M.-M., and A. Coward, 2003: Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model. Ocean Modell., 5, 249266.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, H. Ross, and D. Wolfgladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23, 465487.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M., 2008: The dynamics of the Southern Ocean meridional overturning circulation as diagnosed from an eddy permitting state estimate. Ph.D. thesis, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, 127 pp.

  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899.

  • McDougall, T. J., and P. C. McIntosh, 1996: The temporal-residual-mean velocity. Part I: Derivation and the scalar conservation equations. J. Phys. Oceanogr., 26, 26532665.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660.

  • Nadeau, L.-P., and D. N. Straub, 2009: Basin and channel contributions to a model Anarctic Circumpolar Current. J. Phys. Oceanogr., 39, 9861002.

    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., and D. N. Straub, 2012: Influence of wind stress, wind stress curl, and bottom friction on the transport of a model Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 207222.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and M.-M. Lee, 2004: Isopycnal averaging at constant height. Part II: Relating to the residual streamfunction in Eulerian space. J. Phys. Oceanogr., 34, 27402755.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., D. Borowski, C. Volker, and J.-O. Wolff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Phillips, N. A., 1963: Geostrophic motion. Rev. Geophys., 1, 123176.

  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174.

    • Search Google Scholar
    • Export Citation
  • Robinson, A., and H. Stommel, 1959: The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295308.

  • Sallée, J.-B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529.

  • Samelson, R. M., 1999: Geostrophic circulation in a rectangular basin with a circumpolar connection. J. Phys. Oceanogr., 29, 31753184.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2005: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. J. Atmos. Sci., 62, 18841900.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., I. M. Held, and S. T. Garner, 2003: Boundary effects in potential vorticity dynamics. J. Atmos. Sci., 60, 10241040.

  • Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy-resolving general-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929951.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., I. M. Held, and V. D. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Welander, P., 1959: An advective model of the ocean thermocline. Tellus, 11, 309318.

  • Wunsch, C., and P. Heimbach, 2009: The global zonally integrated ocean circulation, 1992–2006: Seasonal and decadal variability. J. Phys. Oceanogr., 39, 351368.

    • Search Google Scholar
    • Export Citation
  • Wüst, G., 1935: Zur Frage des indischen Tiefenstroms. Naturwissenschaften,23, 137–139. (In English, 1978: The Stratosphere of the Atlantic Ocean. W. J. Emery, Ed., Amerind, 112 pp.)

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5883 5057 2328
PDF Downloads 507 103 14