• Badin, G., and R. G. Williams, 2010: On the buoyancy forcing and residual circulation in the Southern Ocean: The feedback from Ekman and eddy transfer. J. Phys. Oceanogr., 40, 295310.

    • Search Google Scholar
    • Export Citation
  • Badin, G., R. G. Williams, and J. Sharples, 2010: Water-mass transformation in the shelf seas. J. Mar. Res., 68, 19892010.

  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., P2.3. [Available online at https://ams.confex.com/ams/84Annual/webprogram/Paper70720.html.]

  • Bourassa, M. A., and Coauthors, 2013: High-latitude ocean and sea-ice surface fluxes: Challenges for climate research. Bull. Amer. Meteor. Soc., 94, 403423.

    • Search Google Scholar
    • Export Citation
  • Brambilla, E., L. D. Talley, and P. E. Robbins, 2008: Subpolar mode water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res., 113, C04026, doi:10.1029/2006JC004063.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and J. Marshall, 2008: Eddy modulation of air–sea interaction and convection. J. Phys. Oceanogr., 38, 6583.

  • Cerovečki, I., L. Talley, and M. Mazloff, 2011: Southern Ocean air–sea buoyancy flux estimates. J. Climate, 24, 62836306.

  • Danabasoglu, G., S. Peacock, K. Lindsay, and D. Tsumune, 2009: Sensitivity of CFC-11 uptake to physical initial conditions and interannually varying surface forcing in a global ocean model. Ocean Modell., 29, 5865.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, doi:10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., A. Gnanadesikan, S. M. Griffies, and J. L. Sarmiento, 2011: Water mass exchange in the Southern Ocean in coupled climate models. J. Phys. Oceanogr., 41, 17561771.

    • Search Google Scholar
    • Export Citation
  • Fine, R. A., 1993: Circulation of Antarctic Intermediate Water in the Indian Ocean. Deep-Sea Res., 40, 20212042.

  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–2006 ocean atlas. J. Phys. Oceanogr., 40, 12011221.

  • Garrett, C., K. Speer, and E. Tragou, 1995: The relationship between water mass formation and the surface buoyancy flux, with application to Phillips' Red Sea model. J. Phys. Oceanogr., 25, 16961705.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77. Academic Press, 373–386.

  • Hasson, A., A. Koch-Larrouy, R. Morrow, M. Juza, and T. Penduff, 2012: The origin and fate of mode water in the Southern Pacific Ocean. Ocean Dyn., 62, 335354, doi:10.1007/s10236-011-0507-3.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., A. C. Naveira Garabato, and D. P. Stevens, 2002: High mixing rates in the abyssal Southern Ocean. Nature, 415, 10111014.

    • Search Google Scholar
    • Export Citation
  • Holte, J. W., 2010: Subantarctic Mode Water formation: Air–sea fluxes and cross-frontal exchange. Ph.D. dissertation, University of California, San Diego, 112 pp.

  • Holte, J. W., L. D. Talley, T. K. Chereskin, and B. M. Sloyan, 2012: The role of air–sea fluxes in Subantarctic Mode Water formation. J. Geophys. Res., 117, C03040, doi:10.1029/2011JC007798.

    • Search Google Scholar
    • Export Citation
  • Holte, J. W., L. D. Talley, T. K. Chereskin, and B. M. Sloyan, 2013: Subantarctic mode water in the southeast Pacific: Effect of exchange across the Subantarctic Front. J. Geophys. Res., 118, 20522066, doi:10.1002/jgrc.20144.

    • Search Google Scholar
    • Export Citation
  • Ito, T., M. Woloszyn, and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature, 463, 8083.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, B. Blanke, and S. Speich, 2008a: The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr., 38, 13771400.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008b: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., S. Speich, G. Madec, and B. Blanke, 2008c: The global conveyor belt from a Southern Ocean perspective. J. Phys. Oceanogr., 38, 14011425.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Karsten, R., and J. Marshall, 2002: Constructing the residual circulation of the Antarctic Circumpolar Current from observations. J. Phys. Oceanogr., 32, 33153327.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32, 30203038.

    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., R. Morrow, T. Penduff, and M. Juza, 2010: Origin and mechanism of Subantarctic Mode Water formation and transformation in the Southern Indian Ocean. Ocean Dyn., 60, 563583.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Large, W. G., and A. J. G. Nurser, 2001: Ocean surface water mass transformation. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77. Academic Press, 317–336.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., T. P. Boyer, M. E. Conkright, T. O'Brien, J. Antonov, C. Stephens, L. Stathoplos, D. Johnson, and R. Gelfeld, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382, 436439.

  • Marsh, R., G. A. J. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr., 30, 10131045.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res., 46, 545572.

    • Search Google Scholar
    • Export Citation
  • Maze, G., G. Forget, M. Buckley, J. Marshall, and I. Cerovečki, 2009: Using transformation and formation maps to study the role of air–sea heat fluxes in North Atlantic eighteen degree water formation. J. Phys. Oceanogr., 39, 18181835.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899.

  • McCarthy, M. C., and L. D. Talley, 1999: Three-dimensional potential vorticity structure in the Indian Ocean. J. Geophys. Res., 104 (C6), 13 25113 267.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic Mode Water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon Press, 103–119.

  • McCartney, M. S., 1982: The subtropical recirculation of Mode Waters. J. Mar. Res., 40 (Suppl.), 427464.

  • McDonagh, E. L., H. L. Bryden, B. A. King, R. J. Sanders, S. A. Cunningham, and R. Marsh, 2005: Decadal changes in the South Indian Ocean thermocline. J. Climate, 18, 15751590.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP reanalysis over western boundary currents. J. Climate, 15, 20202037.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, and K. J. Heywood, 2003: Water mass conversion, fluxes, and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr., 33, 25652587.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, A. J. Watson, and W. Roether, 2007: Short- circuiting of the overturning circulation in the Antarctic Circumpolar Current. Nature, 447, 194197.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29, 14681487.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42, 641673.

    • Search Google Scholar
    • Export Citation
  • Piola, A. R., and D. T. Georgi, 1982: Circumpolar properties of Antarctic intermediate water and Subantarctic Mode Water. Deep Sea Res., 29, 687711.

    • Search Google Scholar
    • Export Citation
  • Provost, C., C. Escoffier, K. Maamaatuaiahutapu, A. Kartavtseff, and V. Garcon, 1999: Subtropical mode waters in the South Atlantic Ocean. J. Geophys. Res., 104, 21 03321 049.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96, 26752692.

  • Rintoul, S. R., C. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current System. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77. Academic Press, 271–302.

  • Roemmich, D., and B. Cornuelle, 1992: Observing the fluctuations of gyre-scale ocean circulation: A study of the subtropical South Pacific. J. Phys. Oceanogr., 20, 19191934.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Gilson, R. Davis, P. Sutton, S. Wijffels, and S. Rintoul, 2009: Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr., 37, 162173.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371.

  • Sallee, J. B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529.

  • Schmitz, W. J., 1996: On the World Ocean circulation. Vol. II: The Pacific and Indian Oceans—A global update. Woods Hole Oceanographic Institute Tech. Rep. WHOI-96-08, 241 pp.

  • Sloyan, B. M., and S. R. Rintoul, 2001a: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001b: Circulation, renewal and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31, 10051030.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and I. V. Kamenkovich, 2007: Simulation of Subantarctic Mode and Antarctic Intermediate Waters in climate models. J. Climate, 20, 50615080.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., L. D. Talley, T. Chereskin, R. Fine, and J. Holte, 2010: Antarctic Intermediate water and Subantarctic Mode water formation in the southeast Pacific: The role of turbulent mixing. J. Phys. Oceanogr., 40, 15581574.

    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104.

  • Speer, K., H.-J. Isemer, and A. Biastoch, 1995: Global water mass formation from revised COADS data. J. Phys. Oceanogr., 25, 24442457.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222.

  • Spence, P., O. A. Saenko, M. Eby, and A. J. Weaver, 2009: The Southern Ocean overturning: Parameterized versus permitted eddies. J. Phys. Oceanogr., 39, 16341651.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., K. Ueyoshi, A. Kohl, W. G. Large, S. A. Josey, and C. Wunsch, 2004: Estimating air–sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109, C05023, doi:10.1029/2003JC002082.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high quality Arctic Ocean. J. Climate, 14, 20792087.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1996: Antarctic Intermediate Water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer-Verlag, 219–238.

  • Talley, L. D., 1999: Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 1–22.

  • Talley, L. D., 2003: Shallow, intermediate, and deep over- turning components of the global heat budget. J. Phys. Oceanogr., 33, 530560.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2007: Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 2: Pacific Ocean. M. Sparrow, P. Chapman, and J. Gould, Eds., International WOCE Project Office, 327 pp.

  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303, doi:10.1016/j.pocean.2008.05.001.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., T. Chereskin, J. Holte, and Y.-D. Lenn, 2006: Subantarctic Mode Water and Antarctic Intermediate Water formation near the Subantarctic Front in the southeast Pacific in winter 2005. Ocean Sci., Abstract OS075.

  • Taylor, P. K., Ed., 2000: Intercomparison and validation of ocean-atmosphere energy flux fields—Final report of the Joint WCRP/SCOR Working Group on air–sea fluxes. WCRP Rep. WCRP-112, WMO/TD-1036, 306 pp.

  • Thompson, R. O., and R. J. Edwards, 1981: Mixing and water mass formation in the Australian Subantarctic. J. Phys. Oceanogr., 11, 13991406.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., and L. D. Talley, 1998: A Pacific hydrographic section at 88°W: Water property distribution. J. Geophys. Res., 103 (C6), 12 89912 918.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., L. D. Talley, and M. S. McCartney, 1994: Water mass distributions in the western Atlantic: A section from South Georgia Island (54°S) northward across the equator. J. Mar. Res., 52, 5581.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1986: On the role of interior mixing and air–sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16, 680693.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195.

  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26, 22972301.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282.

    • Search Google Scholar
    • Export Citation
  • Willey, D. A., R. A. Fine, R. E. Sonnerup, J. L. Bullister, W. M. Smethie, and M. J. Warner, 2004: Global oceanic chlorofluorocarbon inventory. Geophys. Res. Lett., 31, L01303, doi:10.1029/2003GL018816.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., 2005: Subantarctic mode water and Antarctic intermediate water in the South Indian Ocean based on profiling float data 2000-2004. J. Mar. Res., 63, 789812.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global ocean state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

  • Zhang, H.-M., and L. D. Talley, 1998: Heat and buoyancy budgets and mixing rates in the upper thermocline of the Indian and Global Oceans. J. Phys. Oceanogr., 28, 19611978.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 23
PDF Downloads 16 16 16

Subantarctic Mode Water Formation, Destruction, and Export in the Eddy-Permitting Southern Ocean State Estimate

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Laboratoire de Physique des Océans, UMR 6523, Ifremer, CNRS, IRD, UBO, Plouzané, France
Restricted access

Abstract

Subantarctic Mode Water (SAMW) is examined using the data-assimilating, eddy-permitting Southern Ocean State Estimate, for 2005 and 2006. Surface formation due to air–sea buoyancy flux is estimated using Walin analysis, and diapycnal mixing is diagnosed as the difference between surface formation and transport across 30°S, accounting for volume change with time. Water in the density range 26.5 < σθ < 27.1 kg m−3 that includes SAMW is exported northward in all three ocean sectors, with a net transport of (18.2, 17.1) Sv (1 Sv ≡ 106 m3 s−1; for years 2005, 2006); air–sea buoyancy fluxes form (13.2, 6.8) Sv, diapycnal mixing removes (−14.5, −12.6) Sv, and there is a volume loss of (−19.3, −22.9) Sv mostly occurring in the strongest SAMW formation locations. The most vigorous SAMW formation is in the Indian Ocean by air–sea buoyancy flux (9.4, 10.9) Sv, where it is partially destroyed by diapycnal mixing (−6.6, −3.1) Sv. There is strong export to the Pacific, where SAMW is destroyed both by air–sea buoyancy flux (−1.1, −4.6) Sv and diapycnal mixing (−5.6, −8.4) Sv. In the South Atlantic, SAMW is formed by air–sea buoyancy flux (5.0, 0.5) Sv and is destroyed by diapycnal mixing (−2.3, −1.1) Sv. Peaks in air–sea flux formation occur at the Southeast Indian and Southeast Pacific SAMWs (SEISAMWs, SEPSAMWs) densities. Formation over the broad SAMW circumpolar outcrop windows is largely from denser water, driven by differential freshwater gain, augmented or decreased by heating or cooling. In the SEISAMW and SEPSAMW source regions, however, formation is from lighter water, driven by differential heat loss.

Corresponding author address: Ivana Cerovečki, Climate, Atmospheric Science and Physical Oceanography, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0230. E-mail: icerovecki@ucsd.edu

Abstract

Subantarctic Mode Water (SAMW) is examined using the data-assimilating, eddy-permitting Southern Ocean State Estimate, for 2005 and 2006. Surface formation due to air–sea buoyancy flux is estimated using Walin analysis, and diapycnal mixing is diagnosed as the difference between surface formation and transport across 30°S, accounting for volume change with time. Water in the density range 26.5 < σθ < 27.1 kg m−3 that includes SAMW is exported northward in all three ocean sectors, with a net transport of (18.2, 17.1) Sv (1 Sv ≡ 106 m3 s−1; for years 2005, 2006); air–sea buoyancy fluxes form (13.2, 6.8) Sv, diapycnal mixing removes (−14.5, −12.6) Sv, and there is a volume loss of (−19.3, −22.9) Sv mostly occurring in the strongest SAMW formation locations. The most vigorous SAMW formation is in the Indian Ocean by air–sea buoyancy flux (9.4, 10.9) Sv, where it is partially destroyed by diapycnal mixing (−6.6, −3.1) Sv. There is strong export to the Pacific, where SAMW is destroyed both by air–sea buoyancy flux (−1.1, −4.6) Sv and diapycnal mixing (−5.6, −8.4) Sv. In the South Atlantic, SAMW is formed by air–sea buoyancy flux (5.0, 0.5) Sv and is destroyed by diapycnal mixing (−2.3, −1.1) Sv. Peaks in air–sea flux formation occur at the Southeast Indian and Southeast Pacific SAMWs (SEISAMWs, SEPSAMWs) densities. Formation over the broad SAMW circumpolar outcrop windows is largely from denser water, driven by differential freshwater gain, augmented or decreased by heating or cooling. In the SEISAMW and SEPSAMW source regions, however, formation is from lighter water, driven by differential heat loss.

Corresponding author address: Ivana Cerovečki, Climate, Atmospheric Science and Physical Oceanography, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0230. E-mail: icerovecki@ucsd.edu
Save