Wave Transformation and Wave-Driven Flow across a Steep Coral Reef

Stephen G. Monismith Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Stephen G. Monismith in
Current site
Google Scholar
PubMed
Close
,
Liv M. M. Herdman Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Liv M. M. Herdman in
Current site
Google Scholar
PubMed
Close
,
Soeren Ahmerkamp MPI for Marine Microbiology, Bremen, Germany

Search for other papers by Soeren Ahmerkamp in
Current site
Google Scholar
PubMed
Close
, and
James L. Hench Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California, and Nicholas School of the Environment Marine Laboratory, Duke University, Beaufort, North Carolina

Search for other papers by James L. Hench in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of waves, setup, and wave-driven mean flows were made on a steep coral forereef and its associated lagoonal system on the north shore of Moorea, French Polynesia. Despite the steep and complex geometry of the forereef, and wave amplitudes that are nearly equal to the mean water depth, linear wave theory showed very good agreement with data. Measurements across the reef illustrate the importance of including both wave transport (owing to Stokes drift), as well as the Eulerian mean transport when computing the fluxes over the reef. Finally, the observed setup closely follows the theoretical relationship derived from classic radiation stress theory, although the two parameters that appear in the model—one reflecting wave breaking, the other the effective depth over the reef crest—must be chosen to match theory to data.

Corresponding author address: Stephen G. Monismith, Dept. of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305-4020. E-mail: monismith@stanford.edu

Abstract

Observations of waves, setup, and wave-driven mean flows were made on a steep coral forereef and its associated lagoonal system on the north shore of Moorea, French Polynesia. Despite the steep and complex geometry of the forereef, and wave amplitudes that are nearly equal to the mean water depth, linear wave theory showed very good agreement with data. Measurements across the reef illustrate the importance of including both wave transport (owing to Stokes drift), as well as the Eulerian mean transport when computing the fluxes over the reef. Finally, the observed setup closely follows the theoretical relationship derived from classic radiation stress theory, although the two parameters that appear in the model—one reflecting wave breaking, the other the effective depth over the reef crest—must be chosen to match theory to data.

Corresponding author address: Stephen G. Monismith, Dept. of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305-4020. E-mail: monismith@stanford.edu
Save
  • Bandet, M., 2009: Dynamics of wave-induced boundary layer over very rough boundaries: Field observations over a stretch of coral reef. Ph.D. dissertation, University of Hawaii at Manoa, 200 pp.

  • Bonneton, P., J. P. Lefebvre, P. Bretel, S. Ouillon, and P. Douillet, 2007: Tidal modulation of wave-setup and wave-induced currents on the Aboré coral reef, New Caledonia. J. Coastal Res.,SI50, 662–766.

  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third generation wave model for coastal regions: I. Model description and validation. J. Geophys. Res., 104 (C4) 76497666.

    • Search Google Scholar
    • Export Citation
  • Filipot, J. F., and K. F. Cheung, 2012: Spectral wave modelling in fringing reef environments. Coastal Eng., 67, 6779.

  • Gordon, L., and A. Lohrmann, 2001: Near-shore Doppler current meter wave spectra. Proc. Fourth Int. Symp. on Ocean Wave Measurement and Analysis, WAVES2001, San Francisco, CA, ASCE, 33–43.

  • Gourlay, M. R., 1996: Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an idealised two-dimensional reef. Coastal Eng., 27, 161193.

    • Search Google Scholar
    • Export Citation
  • Gourlay, M. R., and G. Colleter, 2005: Wave-generated flow on coral reefs – An analysis for two-dimensional horizontal reef-tops with steep faces. Coastal Eng., 52, 353387.

    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84, 17971808.

  • Gudmestad, O. T., and J. J. Connor, 1986: Engineering approximations to nonlinear deep water waves. Appl. Ocean Res., 8, 7688.

  • Guza, R. T., and E. B. Thornton, 1980: Local and shoaled comparisons of sea surface elevations, pressures and velocities. J. Geophys. Res., 85 (C3), 15241530.

    • Search Google Scholar
    • Export Citation
  • Hearn, C. J., 1999: Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J. Geophys. Res., 104 (C12), 30 00730 019.

    • Search Google Scholar
    • Export Citation
  • Hench, J. L., J. J. Leichter, and S. G. Monismith, 2008: Episodic circulation and exchange in a wave driven coral reef lagoon system. Limnol. Oceanogr., 53, 26812694.

    • Search Google Scholar
    • Export Citation
  • Herdman, L. M., 2012: Circulation, residence time, and retention in a tropical coral reef. Ph.D. thesis, Stanford University, 288 pp.

  • Holthuijsen, L. G., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387 pp.

  • Jonsson, I. G., 1980: A new approach to oscillatory rough boundary layers. Ocean Eng., 7, 109152.

  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves with application to ‘surf beats.' J. Fluid Mech., 13, 481504.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation stresses in water waves; A physical discussion, with applications. Deep-Sea Res., 11, 529562.

    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, and J. R. Koseff, 2005: Spectral wave dissipation over a barrier reef. J. Geophys. Res., 110, C04001, doi:10.1029/2004JC002711.

    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson, 2009a: Wave-driven circulation of a coastal reef lagoon system. J. Phys. Oceanogr., 39, 873893.

    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson, 2009b: A numerical study of circulation in a coastal reef-lagoon system. J. Geophys. Res., 14, C06022, doi:10.1029/2008JC005081.

    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., C. Hart, and C. B. Pattiaratchi, 2010: Morphological constraints to wave-driven circulation in coastal reef-lagoon systems: A numerical study. J. Geophys. Res., 115, C09021, doi:10.1029/2009JC005753.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178.

    • Search Google Scholar
    • Export Citation
  • Mei, C. C., M. Stiassnie, and D. K.-P. Yue, 2005: Theory and Applications of Ocean Surface Waves, Part 1: Linear Aspects; Part 2: Nonlinear Aspects, Advanced Series on Ocean Engineering, Vol. 23, World Scientific, 1136 pp.

  • Miche, A., 1944: Mouvements ondulatoires de la mer en profondeur croissante ou décroissante. Application aux digues maritimes. Troisième partie. Forme et propriétés des houles limites lors du déferlement. Croissance des vitesses vers la rive. Ann. Ponts Chaussees, 114, 369406.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and M. C. Sargent, 1948: Adjustment of Bikini Atoll to ocean waves. Trans. Amer. Geophys. Union, 29, 855860.

  • Nelson, R. C., 1996: Hydraulic roughness of coral reef platforms. Appl. Ocean Res., 18, 265274.

  • Nunes, V., and G. Pawlak, 2008: Observations of bed roughness of a coral reef. J. Coastal Res., 24, 3950.

  • Nwogu, O., and Z. Demirbilek, 2010: Infragravity wave motions and runup over shallow fringing reefs. J. Waterw. Port Coastal Ocean Eng., 136, 295305.

    • Search Google Scholar
    • Export Citation
  • Péquignet, A. C. N., J. M. Becker, M. A. Merrifield, and J. Aucan, 2009: Forcing of resonant modes on a fringing reef during tropical storm Man-Yi. Geophys. Res. Lett., 36, L03607, doi:10.1029/2008GL036259.

    • Search Google Scholar
    • Export Citation
  • Péquignet, A. C. N., J. M. Becker, M. A. Merrifield, and S. J. Boc, 2011: The dissipation of wind wave energy across a fringing reef at Ipan, Guam. Coral Reefs, 30, 7182.

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., R. T. Guza, and S. Elgar, 1996: Wave transformation across the inner surf zone. J. Geophys. Res., 101 (C11), 25 58925 597.

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., R. T. Guza, and S. Elgar, 2001: Field observations of wave-driven setdown and setup. J. Geophys. Res., 106, 46294638.

    • Search Google Scholar
    • Export Citation
  • Reidenbach, M. A., S. G. Monismith, J. R. Koseff, G. Yahel, and A. Genin, 2006: Boundary layer turbulence and flow structure over a fringing coral reef. Limnol. Oceanogr., 51, 19561968.

    • Search Google Scholar
    • Export Citation
  • Roelvink, D., A. Reniers, A. van Dongeren, J. van Thiel de Vries, R. McCall, and J. Lescinski, 2009: Modelling storm impacts on beaches, dunes, and barrier islands. Coastal Eng., 56, 11331152.

    • Search Google Scholar
    • Export Citation
  • Rosman, J. H., and J. L. Hench, 2011: A framework for understanding drag parameterizations for coral reefs. J. Geophys. Res., 116, C08025, doi:10.1029/2010JC006892.

    • Search Google Scholar
    • Export Citation
  • Ruessink, B. G., J. R. Miles, F. Feddersen, R. T. Guza, and S. Elgar, 2001: Modeling the alongshore current on barred beaches. J. Geophys. Res., 106 (C10), 22 45122 463.

    • Search Google Scholar
    • Export Citation
  • Sheremet, A., R. T. Guza, S. Elgar, and T. H. C. Herbers, 2002: Observations of nearshore infragravity waves: Part 1: Seaward and shoreward propagating components. J. Geophys. Res., 107 (C8), doi:10.1029/2001JC000970.

    • Search Google Scholar
    • Export Citation
  • Shinn, E. A., 1963: Spur and groove formation on the Florida reef tract. J. Sediment. Res., 33, 291303.

  • Storlazzi, C. D., J. B. Logan, and M. E. Field, 2003: Quantitative morphology of a fringing reef tract from high-resolution laser bathymetry: Southern Molokai, Hawaii. Geol. Soc. Amer. Bull., 115, 13441355.

    • Search Google Scholar
    • Export Citation
  • Strong, B., B. H. Brumley, E. A. Terray, and G. W. Stone, 2000: The performance of ADCP-derived wave spectra and comparison with other independent measurements. Proc. Oceans 2000, Providence, RI, MST/IEEE, 1195–1203.

  • Svendsen, I. A., 2006: Introduction to Nearshore Nydrodynamics. World Scientific, 722 pp.

  • Symonds, G., K. P. Black, and I. R. Young, 1995: Wave-driven flow over shallow reefs. J. Geophys. Res., 100 (C2), 26392648.

  • Symonds, G., L. Zhong, and N. A. Mortimer, 2011: Effects of wave exposure on circulation in a temperate reef environment. J. Geophys. Res., 116, C09010, doi:10.1029/2010JC006658.

    • Search Google Scholar
    • Export Citation
  • Taebi, S., R. J. Lowe, C. B. Pattiaratchi, G. N. Ivey, G. Symonds, and R. Brinkman, 2011: Nearshore circulation in a tropical fringing reef system. J. Geophys. Res., 116, C02016, doi:10.1029/2010JC006439.

    • Search Google Scholar
    • Export Citation
  • Tait, R. J., 1972: Wave set-up on coral reefs. J. Geophys. Res., 77, 22072211.

  • Vetter, O., J. M. Becker, M. A. Merrifield, A. C. Pequignet, J. Aucan, S. J. Boc, and C. E. Pollock, 2010: Wave setup over a Pacific Island fringing reef. J. Geophys. Res., 115, C12066, doi:10.1029/2010JC006455.

    • Search Google Scholar
    • Export Citation
  • Yao, Y., E. Lo, Z. Huang, and S. Monismith, 2009: An experimental study of wave-induced setup over a horizontal reef with an idealized ridge. Proc. OMAE09 28th Int. Conf. on Ocean, Offshore and Arctic Engineering, Honolulu, HI, ASCE, 383–389, doi:10.1115/OMAE2009-79224.

  • Yao, Y., Z. H. Huang, S. G. Monismith, and E. Y. M. Lo, 2013: Characteristics of monochromatic waves breaking over fringing reefs. J. Coastal Res., 29, 94–104.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1218 437 77
PDF Downloads 797 338 41